问题标题: 洛谷:P1265 公路修建

1
0
已解决
王星河
王星河
资深光能
资深光能

https://www.luogu.org/problemnew/show/P1265

好像不会做喵~

王星河在2018-02-01 20:12:55追加了内容

题目在这, @臧启亚 

 

题目描述

某国有n个城市,它们互相之间没有公路相通,因此交通十分不便。为解决这一“行路难”的问题,政府决定修建公路。修建公路的任务由各城市共同完成。

修建工程分若干轮完成。在每一轮中,每个城市选择一个与它最近的城市,申请修建通往该城市的公路。政府负责审批这些申请以决定是否同意修建。

政府审批的规则如下:

(1)如果两个或以上城市申请修建同一条公路,则让它们共同修建;

(2)如果三个或以上的城市申请修建的公路成环。如下图,A申请修建公路AB,B申请修建公路BC,C申请修建公路CA。则政府将否决其中最短的一条公路的修建申请;

(3)其他情况的申请一律同意。

一轮修建结束后,可能会有若干城市可以通过公路直接或间接相连。这些可以互相:连通的城市即组成“城市联盟”。在下一轮修建中,每个“城市联盟”将被看作一个城市,发挥一个城市的作用。

当所有城市被组合成一个“城市联盟”时,修建工程也就完成了。

你的任务是根据城市的分布和前面讲到的规则,计算出将要修建的公路总长度。

输入输出格式

输入格式:

 

第一行一个整数n,表示城市的数量。(n≤5000)

以下n行,每行两个整数x和y,表示一个城市的坐标。(-1000000≤x,y≤1000000)

 

输出格式:

 

一个实数,四舍五入保留两位小数,表示公路总长。(保证有惟一解)

 

输入输出样例

输入样例#1: 

4
0 0
1 2
-1 2
0 4

输出样例#1: 

6.47

说明

修建的公路如图所示: 


0
已采纳
梁锦程
梁锦程
高级光能
高级光能

首先可以证明,规则(2)是毫无用处的,因为三个以上城市成环的情况是不可能出现的(反证法)。接下来可以证明,按“轮”进行处理也是没有必要的,因此只需直接求出最小生成树即可。平方阶的Prim在时间上是可以通过的,但如果开5000*5000邻接矩阵的话会MLE,因此没有必要把边权预处理出来保存在矩阵里,每次需要用到的时候直接计算即可。

double dis(int i,int j)
{
    return sqrt((double)(x[i]-x[j])*(x[i]-x[j])+(double)(y[i]-y[j])*(y[i]-y[j]));
}
for(int i=1;i<=n;i++)
        d[i]=dis(1,i);
    int k;
    for(int i=1;i<=n-1;i++)
    {
        double mn=1e9;
        for(int j=1;j<=n;j++)
            if(d[j]&&d[j]<mn)
            {
                mn=d[j];
                k=j;
            }
        d[k]=0;
        cnt+=mn;
        for(int j=1;j<=n;j++)
            if(dis(k,j)<d[j])
                d[j]=dis(k,j);
    }
    printf("%.2f\n",cnt);

 

0
0
0
臧启亚
臧启亚
初级光能
初级光能

可以发一下问题么

木有洛谷账号

我要回答