问题标题: 酷町堂:求一篇好的说STL的所有函数的文章

1
0

1
已采纳
黄昊轩
黄昊轩
新手守护
新手守护

C++STL中全排列函数next_permutation的使用

 

   next_permutation函数

 

    组合数学中经常用到排列,这里介绍一个计算序列全排列的函数:next_permutation(start,end),和prev_permutation(start,end)。这两个函数作用是一样的,区别就在于前者求的是当前排列的下一个排列,后一个求的是当前排列的上一个排列。至于这里的“前一个”和“后一个”,我们可以把它理解为序列的字典序的前后,严格来讲,就是对于当前序列pn,他的下一个序列pn+1满足:不存在另外的序列pm,使pn<pm<pn+1.

 

对于next_permutation函数,其函数原型为:

     #include <algorithm>

     bool next_permutation(iterator start,iterator end)

当当前序列不存在下一个排列时,函数返回false,否则返回true

 

我们来看下面这个例子:

 

 
  1. #include <iostream>

  2. #include <algorithm>

  3. using namespace std;

  4. int main()

  5. {

  6. int num[3]={1,2,3};

  7. do

  8. {

  9. cout<<num[0]<<" "<<num[1]<<" "<<num[2]<<endl;

  10. }while(next_permutation(num,num+3));

  11. return 0;

  12. }

 

 

输出结果为:

当我们把while(next_permutation(num,num+3))中的3改为2时,输出就变为了:

由此可以看出,next_permutation(num,num+n)函数是对数组num中的前n个元素进行全排列,同时并改变num数组的值。

另外,需要强调的是,next_permutation()在使用前需要对欲排列数组按升序排序,否则只能找出该序列之后的全排列数。比如,如果数组num初始化为2,3,1,那么输出就变为了:

 

此外,next_permutation(node,node+n,cmp)可以对结构体num按照自定义的排序方式cmp进行排序。

 

 

 

c++ stl集合set介绍

   c++ stl集合(Set)是一种包含已排序对象的关联容器。set/multiset会根据待定的排序准则,自动将元素排序。两者不同在于前者不允许元素重复,而后者允许。

1) 不能直接改变元素值,因为那样会打乱原本正确的顺序,要改变元素值必须先删除旧元素,则插入新元素

2) 不提供直接存取元素的任何操作函数,只能通过迭代器进行间接存取,而且从迭代器角度来看,元素值是常数

3) 元素比较动作只能用于型别相同的容器(即元素和排序准则必须相同)

set模板原型://Key为元素(键值)类型

template <class Key, class Compare=less<Key>, class Alloc=STL_DEFAULT_ALLOCATOR(Key) >

从原型可以看出,可以看出比较函数对象及内存分配器采用的是默认参数,因此如果未指定,它们将采用系统默认方式。

 

set的各成员函数列表如下:

c++ stl容器set成员函数:begin()--返回指向第一个元素的迭代器

c++ stl容器set成员函数:clear()--清除所有元素

c++ stl容器set成员函数:count()--返回某个值元素的个数

c++ stl容器set成员函数:empty()--如果集合为空,返回true

c++ stl容器set成员函数:end()--返回指向最后一个元素的迭代器

c++ stl容器set成员函数:equal_range()--返回集合中与给定值相等的上下限的两个迭代器

c++ stl容器set成员函数:erase()--删除集合中的元素

c++ stl容器set成员函数:find()--返回一个指向被查找到元素的迭代器

c++ stl容器set成员函数:get_allocator()--返回集合的分配器

c++ stl容器set成员函数:insert()--在集合中插入元素

c++ stl容器set成员函数:lower_bound()--返回指向大于(或等于)某值的第一个元素的迭代器

c++ stl容器set成员函数:key_comp()--返回一个用于元素间值比较的函数

c++ stl容器set成员函数:max_size()--返回集合能容纳的元素的最大限值

c++ stl容器set成员函数:rbegin()--返回指向集合中最后一个元素的反向迭代器

c++ stl容器set成员函数:rend()--返回指向集合中第一个元素的反向迭代器

c++ stl容器set成员函数:size()--集合中元素的数目

c++ stl容器set成员函数:swap()--交换两个集合变量

c++ stl容器set成员函数:upper_bound()--返回大于某个值元素的迭代器

c++ stl容器set成员函数:value_comp()--返回一个用于比较元素间的值的函数

 

c++ stl集合set插入,遍历用法举例

#include<iostream> 
#include<set> 
using namespace std; 
//set插入元素操作  
int main() 
{ 
    //定义一个int型集合对象s,当前没有任何元素.由www.169it.com搜集整理
    set<int> s; 
    s.insert(8);  //第一次插入8,可以插入  
    s.insert(1); 
    s.insert(12); 
    s.insert(6); 
    s.insert(8);   //第二次插入8,重复元素,不会插入  
    set<int>::iterator it; //定义前向迭代器 
    //中序遍历集合中的所有元素  
    for(it=s.begin();it!=s.end();it++) 
    cout<<*it<<endl;    
    system("pause"); 
    return 0; 
}

 

 

 

 

c++ stl集合set介绍

   c++ stl集合(Set)是一种包含已排序对象的关联容器。set/multiset会根据待定的排序准则,自动将元素排序。两者不同在于前者不允许元素重复,而后者允许。

1) 不能直接改变元素值,因为那样会打乱原本正确的顺序,要改变元素值必须先删除旧元素,则插入新元素

2) 不提供直接存取元素的任何操作函数,只能通过迭代器进行间接存取,而且从迭代器角度来看,元素值是常数

3) 元素比较动作只能用于型别相同的容器(即元素和排序准则必须相同)

set模板原型://Key为元素(键值)类型

template <class Key, class Compare=less<Key>, class Alloc=STL_DEFAULT_ALLOCATOR(Key) >

从原型可以看出,可以看出比较函数对象及内存分配器采用的是默认参数,因此如果未指定,它们将采用系统默认方式。

 

set的各成员函数列表如下:

c++ stl容器set成员函数:begin()--返回指向第一个元素的迭代器

c++ stl容器set成员函数:clear()--清除所有元素

c++ stl容器set成员函数:count()--返回某个值元素的个数

c++ stl容器set成员函数:empty()--如果集合为空,返回true

c++ stl容器set成员函数:end()--返回指向最后一个元素的迭代器

c++ stl容器set成员函数:equal_range()--返回集合中与给定值相等的上下限的两个迭代器

c++ stl容器set成员函数:erase()--删除集合中的元素

c++ stl容器set成员函数:find()--返回一个指向被查找到元素的迭代器

c++ stl容器set成员函数:get_allocator()--返回集合的分配器

c++ stl容器set成员函数:insert()--在集合中插入元素

c++ stl容器set成员函数:lower_bound()--返回指向大于(或等于)某值的第一个元素的迭代器

c++ stl容器set成员函数:key_comp()--返回一个用于元素间值比较的函数

c++ stl容器set成员函数:max_size()--返回集合能容纳的元素的最大限值

c++ stl容器set成员函数:rbegin()--返回指向集合中最后一个元素的反向迭代器

c++ stl容器set成员函数:rend()--返回指向集合中第一个元素的反向迭代器

c++ stl容器set成员函数:size()--集合中元素的数目

c++ stl容器set成员函数:swap()--交换两个集合变量

c++ stl容器set成员函数:upper_bound()--返回大于某个值元素的迭代器

c++ stl容器set成员函数:value_comp()--返回一个用于比较元素间的值的函数

 

c++ stl集合set插入,遍历用法举例

#include<iostream> 
#include<set> 
using namespace std; 
//set插入元素操作  
int main() 
{ 
    //定义一个int型集合对象s,当前没有任何元素.由www.169it.com搜集整理
    set<int> s; 
    s.insert(8);  //第一次插入8,可以插入  
    s.insert(1); 
    s.insert(12); 
    s.insert(6); 
    s.insert(8);   //第二次插入8,重复元素,不会插入  
    set<int>::iterator it; //定义前向迭代器 
    //中序遍历集合中的所有元素  
    for(it=s.begin();it!=s.end();it++) 
    cout<<*it<<endl;    
    system("pause"); 
    return 0; 
}

 

 

STL - 模板库 免费编辑 修改义项名

所属类别 :

信息与系统科学相关工程与技术

STL是Standard Template Library的简称,中文名标准模板库惠普实验室开发的一系列软件的统称。它是由Alexander Stepanov、Meng Lee和David R Musser在惠普实验室工作时所开发出来的。从根本上说,STL是一些"容器"的集合,这些"容器"有list,vector,set,map等,STL也是算法和其他一些组件的集合。这里的"容器"和算法的集合指的是世界上很多聪明人很多年的杰作。STL的目的是标准化组件,这样就不用重新开发,可以使用现成的组件。STL现在是C++的一部分,因此不用安装额外的库文件。

STL的版本很多,常见的有HP STL、PJ STL、 SGI STL等。

在C++标准中,STL被组织为下面的13个头文件:<algorithm>、<deque>、<functional>、<iterator>、<array>、<vector>、<list>、<forward_list>、<map>、<unordered_map>、<memory>、<numeric>、<queue>、<set>、<unordered_set>、<stack>和<utility>。

 

基本信息

 

  • 全称

    Standard Template Library

  • 包括

    容器

目录

1组成部分

2容器

3迭代器

4算法

折叠编辑本段组成部分

STL可分为容器(containers)、迭代器(iterators)、空间配置器(allocator)、配接器(adapters)、算法(algorithms)、仿函数(functors)六个部分。

折叠编辑本段容器

在实际的开发过程中,数据结构本身的重要性不会逊于操作于数据结构的算法的重要性,当程序中存在着对时间要求很高的部分时,数据结构的选择就显得更加重要。

经典的数据结构数量有限,但是我们常常重复着一些为了实现向量、链表等结构而编写的代码,这些代码都十分相似,只是为了适应不同数据的变化而在细节上有所出入。STL容器就为我们提供了这样的方便,它允许我们重复利用已有的实现构造自己的特定类型下的数据结构,通过设置一些模板类,STL容器对最常用的数据结构提供了支持,这些模板的参数允许我们指定容器中元素的数据类型,可以将我们许多重复而乏味的工作简化。

容器部分主要由头文件<vector>,<list>,<deque>,<set>,<map>,<stack>和<queue>组成。对于常用的一些容器和容器适配器(可以看作由其它容器实现的容器),可以通过下表总结一下它们和相应头文件的对应关系。

序列式容器

向量(vector) 连续存储的元素<vector>

列表(list) 由节点组成的双向链表,每个结点包含着一个元素<list>

双端队列(deque) 连续存储的指向不同元素的指针所组成的数组<deque>

适配器容器

(stack) 后进先出的值的排列 <stack>

队列(queue) 先进先出的值的排列 <queue>

优先队列(priority_queue) 元素的次序是由作用于所存储的值对上的某种谓词决定的的一种队列 <queue>

关联式容器

集合(set) 由节点组成的红黑树,每个节点都包含着一个元素,节点之间以某种作用于元素对的谓词排列,没有两个不同的元素能够拥有相同的次序 <set>

多重集合(multiset) 允许存在两个次序相等的元素的集合 <set>

映射(map) 由{键,值}对组成的集合,以某种作用于键对上的谓词排列 <map>

多重映射(multimap) 允许键对有相等的次序的映射 <map>

折叠编辑本段迭代器

下面要说的迭代器从作用上来说是最基本的部分,可是理解起来比前两者都要费力一些(至少笔者是这样)。软件设计有一个基本原则,所有的问题都可以通过引进一个间接层来简化,这种简化在STL中就是用迭代器来完成的。概括来说,迭代器在STL中用来将算法和容器联系起来,起着一种黏和剂的作用。几乎STL提供的所有算法都是通过迭代器存取元素序列进行工作的,每一个容器都定义了其本身所专有的迭代器,用以存取容器中的元素。

迭代器部分主要由头文件<utility>,<iterator>和<memory>组成。<utility>是一个很小的头文件,它包括了贯穿使用在STL中的几个模板的声明,<iterator>中提供了迭代器使用的许多方法,而对于<memory>的描述则十分的困难,它以不同寻常的方式为容器中的元素分配存储空间,同时也为某些算法执行期间产生的临时对象提供机制,<memory>中的主要部分是模板类allocator,它负责产生所有容器中的默认分配器。

折叠编辑本段算法

大家都能取得的一个共识是函数库对数据类型的选择对其可重用性起着至关重要的作用。举例来说,一个求方根的函数,在使用浮点数作为其参数类型的情况下的可重用性肯定比使用整型作为它的参数类型要高。而C++通过模板的机制允许推迟对某些类型的选择,直到真正想使用模板或者说对模板进行特化的时候,STL就利用了这一点提供了相当多的有用算法。它是在一个有效的框架中完成这些算法的--你可以将所有的类型划分为少数的几类,然后就可以在模版的参数中使用一种类型替换掉同一种类中的其他类型。

STL提供了大约100个实现算法的模版函数,比如算法for_each将为指定序列中的每一个元素调用指定的函数,stable_sort以你所指定的规则对序列进行稳定性排序等等。这样一来,只要我们熟悉了STL之后,许多代码可以被大大的化简,只需要通过调用一两个算法模板,就可以完成所需要的功能并大大地提升效率。

算法部分主要由头文件<algorithm>,<numeric>和<functional>组成。<algorithm>是所有STL头文件中最大的一个(然而它很好理解),它是由一大堆模版函数组成的,可以认为每个函数在很大程度上都是独立的,其中常用到的功能范围涉及到比较、交换、查找、遍历操作、复制、修改、移除、反转、排序、合并等等。<numeric>体积很小,只包括几个在序列上面进行简单数学运算的模板函数,包括加法和乘法在序列上的一些操作。<functional>中则定义了一些模板类,用以声明函数对象

 

 

 

 

 

 

 

 

1.1 什么是STL?

STL(Standard Template Library),即标准模板库,是一个具有工业强度的,高效的C++程序库。它被容纳于C++标准程序库(C++ Standard Library)中,是ANSI/ISO C++标准中最新的也是极具革命性的一部分。该库包含了诸多在计算机科学领域里所常用的基本数据结构和基本算法。为广大C++程序员们提供了一个可扩展的应用框架,高度体现了软件的可复用性。
STL的一个重要特点是数据结构和算法的分离。尽管这是个简单的概念,但这种分离确实使得STL变得非常通用。例如,由于STL的sort()函数是完全通用的,你可以用它来操作几乎任何数据集合,包括链表,容器和数组;
STL另一个重要特性是它不是面向对象的。为了具有足够通用性,STL主要依赖于模板而不是封装,继承和虚函数(多态性)——OOP的三个要素。你在STL中找不到任何明显的类继承关系。这好像是一种倒退,但这正好是使得STL的组件具有广泛通用性的底层特征。另外,由于STL是基于模板,内联函数的使用使得生成的代码短小高效;
从逻辑层次来看,在STL中体现了泛型化程序设计的思想,引入了诸多新的名词,比如像需求(requirements),概念(concept),模型(model),容器(container),算法(algorithmn),迭代子(iterator)等。与OOP(object-oriented programming)中的多态(polymorphism)一样,泛型也是一种软件的复用技术;从实现层次看,整个STL是以一种类型参数化的方式实现的,这种方式基于一个在早先C++标准中没有出现的语言特性--模板(template)。

1.2 STL内容介绍

STL中六大组件:
1)容器(Container),是一种数据结构,如list,vector,和deques ,以模板类的方法提供。为了访问容器中的数据,可以使用由容器类输出的迭代器;
2)迭代器(Iterator),提供了访问容器中对象的方法。例如,可以使用一对迭代器指定list或vector中的一定范围的对象。迭代器就如同一个指针。事实上,C++的指针也是一种迭代器。但是,迭代器也可以是那些定义了operator*()以及其他类似于指针的操作符地方法的类对象;
3)算法(Algorithm),是用来操作容器中的数据的模板函数。例如,STL用sort()来对一个vector中的数据进行排序,用find()来搜索一个list中的对象,函数本身与他们操作的数据的结构和类型无关,因此他们可以在从简单数组到高度复杂容器的任何数据结构上使用;
4)仿函数(Function object)
5)迭代适配器(Adaptor)
6)空间配制器(allocator)
下面我将依次介绍STL的这三个主要组件。

1.2.1 容器

STL中的容器有队列容器和关联容器,容器适配器(congtainer adapters:stack,queue,priority queue),位集(bit_set),串包(string_package)等等。
  (1)序列式容器(Sequence containers),每个元素都有固定位置--取决于插入时机和地点,和元素值无关,vector、deque、list;
Vectors:将元素置于一个动态数组中加以管理,可以随机存取元素(用索引直接存取),数组尾部添加或移除元素非常快速。但是在中部或头部安插元素比较费时;
Deques:是“double-ended queue”的缩写,可以随机存取元素(用索引直接存取),数组头部和尾部添加或移除元素都非常快速。但是在中部或头部安插元素比较费时;
Lists:双向链表,不提供随机存取(按顺序走到需存取的元素,O(n)),在任何位置上执行插入或删除动作都非常迅速,内部只需调整一下指针;
(2)关联式容器(Associated containers),元素位置取决于特定的排序准则,和插入顺序无关,set、multiset、map、multimap;
Sets/Multisets:内部的元素依据其值自动排序,Set内的相同数值的元素只能出现一次,Multisets内可包含多个数值相同的元素,内部由二叉树实现,便于查找;
Maps/Multimaps:Map的元素是成对的键值/实值,内部的元素依据其值自动排序,Map内的相同数值的元素只能出现一次,Multimaps内可包含多个数值相同的元素,内部由二叉树实现,便于查找;

容器类自动申请和释放内存,无需new和delete操作。vector基于模板实现,需包含头文件vector。

 

 
  1. //1.定义和初始化

  2. vector<int> vec1; //默认初始化,vec1为空

  3. vector<int> vec2(vec1); //使用vec1初始化vec2

  4. vector<int> vec3(vec1.begin(),vec1.end());//使用vec1初始化vec2

  5. vector<int> vec4(10); //10个值为的元素

  6. vector<int> vec5(10,4); //10个值为的元素

  7. //2.常用操作方法

  8. vec1.push_back(100); //添加元素

  9. int size = vec1.size(); //元素个数

  10. bool isEmpty = vec1.empty(); //判断是否为空

  11. cout<<vec1[0]<<endl; //取得第一个元素

  12. vec1.insert(vec1.end(),5,3); //从vec1.back位置插入个值为的元素

  13. vec1.pop_back(); //删除末尾元素

  14. vec1.erase(vec1.begin(),vec1.end());//删除之间的元素,其他元素前移

  15. cout<<(vec1==vec2)?true:false; //判断是否相等==、!=、>=、<=...

  16. vector<int>::iterator iter = vec1.begin(); //获取迭代器首地址

  17. vec1.clear(); //清空元素

  18. //3.遍历

  19. //下标法

  20. int length = vec1.size();

  21. for(int i=0;i<length;i++)

  22. {

  23. cout<<vec1[i];

  24. }

  25. cout<<endl<<endl;

  26. //迭代器法

  27. vector<int>::const_iterator iterator = vec1.begin();

  28. for(;iterator != vec1.end();iterator++)

  29. {

  30. cout<<*iterator;

  31. }

1.2.2.STL迭代器

Iterator(迭代器)模式又称Cursor(游标)模式,用于提供一种方法顺序访问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示。或者这样说可能更容易理解:Iterator模式是运用于聚合对象的一种模式,通过运用该模式,使得我们可以在不知道对象内部表示的情况下,按照一定顺序(由iterator提供的方法)访问聚合对象中的各个元素。

迭代器的作用:能够让迭代器与算法不干扰的相互发展,最后又能无间隙的粘合起来,重载了*,++,==,!=,=运算符。用以操作复杂的数据结构,容器提供迭代器,算法使用迭代器;常见的一些迭代器类型:iterator、const_iterator、reverse_iterator和const_reverse_iterator,实例如下:

 

 
  1. #include <iostream>

  2. #include <vector>

  3. using namespace std;

  4. int main()

  5. {

  6. vector<int> v;

  7. v.push_back(3); //数组尾部插入3

  8. v.push_back(2);

  9. v.push_back(1);

  10. v.push_back(0);

  11. cout << " 下标 " << v[3] << endl;

  12. cout << " 迭代器 " << endl;

  13. for(vector<int>::iterator i = v.begin();i!= v.end();++i)

  14. {

  15. cout << *i << " ";

  16. }

  17. cout << endl;

  18. //在第一个元素之前插入111 insert begin+n是在第n个元素之前插入

  19. v.insert(v.begin(),111);

  20. //在最后一个元素之后插入222 insert end + n 是在n个元素之后插入

  21. v.insert(v.end(),222);

  22. for(vector<int>::iterator i = v.begin();i!= v.end();++i)

  23. {

  24. cout << *i << " ";

  25. }

  26. cout << endl;

  27.  
  28. vector<int> arr(10);

  29. for(int i = 0; i < 10; i++)

  30. {

  31. arr[i] = i;

  32. }

  33. for(vector<int>::iterator i = arr.begin();i!= arr.end();++i)

  34. {

  35. cout << *i << " ";

  36. }

  37. cout << endl;

  38. //删除 同insert

  39. arr.erase(arr.begin());

  40. for(vector<int>::iterator i = arr.begin();i!= arr.end();++i)

  41. {

  42. cout << *i << " " ;

  43. }

  44. cout << endl ;

  45. arr.erase(arr.begin(),arr.begin()+5);

  46. for(vector<int>::iterator i = arr.begin();i!= arr.end();++i)

  47. {

  48. cout << *i << " " ;

  49. }

  50. cout << endl ;

  51. return 0 ;

  52. }

运行结果:


实例2:数组转置 (<algorithm> reverse)
     reverse(v.begin(),v.end())

 
  1. #include<iostream>

  2. #include<vector>

  3. #include<algorithm>

  4. using namespace std;

  5. int main()

  6. {

  7. vector<int> v;

  8. for(int i = 0; i < 10; ++i)

  9. {

  10. v.push_back(i);

  11. }

  12. for(vector<int>::iterator it = v.begin(); it != v.end(); ++it)

  13. {

  14. cout << *it << " ";

  15. }

  16. cout << endl;

  17. reverse(v.begin(),v.end());

  18. for(vector<int>::iterator it = v.begin(); it != v.end(); ++it)

  19. {

  20. cout << *it << " ";

  21. }

  22. cout << endl;

  23. return 0;

  24. }

运行结果:

1.2.3、算法

函数库对数据类型的选择对其可重用性起着至关重要的作用。举例来说,一个求方根的函数,在使用浮点数作为其参数类型的情况下的可重用性肯定比使用整型作为它的参数类性要高。而C++通过模板的机制允许推迟对某些类型的选择,直到真正想使用模板或者说对模板进行特化的时候,STL就利用了这一点提供了相当多的有用算法。它是在一个有效的框架中完成这些算法的——你可以将所有的类型划分为少数的几类,然后就可以在模版的参数中使用一种类型替换掉同一种类中的其他类型。
STL提供了大约100个实现算法的模版函数,比如算法for_each将为指定序列中的每一个元素调用指定的函数,stable_sort以你所指定的规则对序列进行稳定性排序等等。只要我们熟悉了STL之后,许多代码可以被大大的化简,只需要通过调用一两个算法模板,就可以完成所需要的功能并大大地提升效率。
算法部分主要由头文件<algorithm>,<numeric>和<functional>组成。
<algorithm>是所有STL头文件中最大的一个(尽管它很好理解),它是由一大堆模版函数组成的,可以认为每个函数在很大程度上都是独立的,其中常用到的功能范围涉及到比较、交换、查找、遍历操作、复制、修改、移除、反转、排序、合并等等。
<numeric>体积很小,只包括几个在序列上面进行简单数学运算的模板函数,包括加法和乘法在序列上的一些操作。
<functional>中则定义了一些模板类,用以声明函数对象。
STL中算法大致分为四类:
1)非可变序列算法:指不直接修改其所操作的容器内容的算法。
2)可变序列算法:指可以修改它们所操作的容器内容的算法。
3)排序算法:对序列进行排序和合并的算法、搜索算法以及有序序列上的集合操作。
4)数值算法:对容器内容进行数值计算。
以下对所有算法进行细致分类并标明功能:
<一>查找算法(13个):判断容器中是否包含某个值
adjacent_find: 在iterator对标识元素范围内,查找一对相邻重复元素,找到则返回指向这对元素的第一个元素的ForwardIterator。否则返回last。重载版本使用输入的二元操作符代替相等的判断。
binary_search: 在有序序列中查找value,找到返回true。重载的版本实用指定的比较函数对象或函数指针来判断相等。
count: 利用等于操作符,把标志范围内的元素与输入值比较,返回相等元素个数。
count_if: 利用输入的操作符,对标志范围内的元素进行操作,返回结果为true的个数。
equal_range: 功能类似equal,返回一对iterator,第一个表示lower_bound,第二个表示upper_bound。
find: 利用底层元素的等于操作符,对指定范围内的元素与输入值进行比较。当匹配时,结束搜索,返回该元素的一个InputIterator。
find_end: 在指定范围内查找"由输入的另外一对iterator标志的第二个序列"的最后一次出现。找到则返回最后一对的第一个ForwardIterator,否则返回输入的"另外一对"的第一个ForwardIterator。重载版本使用用户输入的操作符代替等于操作。
find_first_of: 在指定范围内查找"由输入的另外一对iterator标志的第二个序列"中任意一个元素的第一次出现。重载版本中使用了用户自定义操作符。
find_if: 使用输入的函数代替等于操作符执行find。
lower_bound: 返回一个ForwardIterator,指向在有序序列范围内的可以插入指定值而不破坏容器顺序的第一个位置。重载函数使用自定义比较操作。
upper_bound: 返回一个ForwardIterator,指向在有序序列范围内插入value而不破坏容器顺序的最后一个位置,该位置标志一个大于value的值。重载函数使用自定义比较操作。
search: 给出两个范围,返回一个ForwardIterator,查找成功指向第一个范围内第一次出现子序列(第二个范围)的位置,查找失败指向last1。重载版本使用自定义的比较操作。
search_n: 在指定范围内查找val出现n次的子序列。重载版本使用自定义的比较操作。
<二>排序和通用算法(14个):提供元素排序策略
inplace_merge: 合并两个有序序列,结果序列覆盖两端范围。重载版本使用输入的操作进行排序。
merge: 合并两个有序序列,存放到另一个序列。重载版本使用自定义的比较。
nth_element: 将范围内的序列重新排序,使所有小于第n个元素的元素都出现在它前面,而大于它的都出现在后面。重载版本使用自定义的比较操作。
partial_sort: 对序列做部分排序,被排序元素个数正好可以被放到范围内。重载版本使用自定义的比较操作。
partial_sort_copy: 与partial_sort类似,不过将经过排序的序列复制到另一个容器。
partition: 对指定范围内元素重新排序,使用输入的函数,把结果为true的元素放在结果为false的元素之前。
random_shuffle: 对指定范围内的元素随机调整次序。重载版本输入一个随机数产生操作。
reverse: 将指定范围内元素重新反序排序。
reverse_copy: 与reverse类似,不过将结果写入另一个容器。
rotate: 将指定范围内元素移到容器末尾,由middle指向的元素成为容器第一个元素。
rotate_copy: 与rotate类似,不过将结果写入另一个容器。
sort: 以升序重新排列指定范围内的元素。重载版本使用自定义的比较操作。
stable_sort: 与sort类似,不过保留相等元素之间的顺序关系。
stable_partition: 与partition类似,不过不保证保留容器中的相对顺序。
<三>删除和替换算法(15个)
copy: 复制序列
copy_backward: 与copy相同,不过元素是以相反顺序被拷贝。
iter_swap: 交换两个ForwardIterator的值。
remove: 删除指定范围内所有等于指定元素的元素。注意,该函数不是真正删除函数。内置函数不适合使用remove和remove_if函数。
remove_copy: 将所有不匹配元素复制到一个制定容器,返回OutputIterator指向被拷贝的末元素的下一个位置。
remove_if: 删除指定范围内输入操作结果为true的所有元素。
remove_copy_if: 将所有不匹配元素拷贝到一个指定容器。
replace: 将指定范围内所有等于vold的元素都用vnew代替。
replace_copy: 与replace类似,不过将结果写入另一个容器。
replace_if: 将指定范围内所有操作结果为true的元素用新值代替。
replace_copy_if: 与replace_if,不过将结果写入另一个容器。
swap: 交换存储在两个对象中的值。
swap_range: 将指定范围内的元素与另一个序列元素值进行交换。
unique: 清除序列中重复元素,和remove类似,它也不能真正删除元素。重载版本使用自定义比较操作。
unique_copy: 与unique类似,不过把结果输出到另一个容器。
<四>排列组合算法(2个):提供计算给定集合按一定顺序的所有可能排列组合
next_permutation: 取出当前范围内的排列,并重新排序为下一个排列。重载版本使用自定义的比较操作。
prev_permutation: 取出指定范围内的序列并将它重新排序为上一个序列。如果不存在上一个序列则返回false。重载版本使用自定义的比较操作。
<五>算术算法(4个)
accumulate: iterator对标识的序列段元素之和,加到一个由val指定的初始值上。重载版本不再做加法,而是传进来的二元操作符被应用到元素上。
partial_sum: 创建一个新序列,其中每个元素值代表指定范围内该位置前所有元素之和。重载版本使用自定义操作代替加法。
inner_product: 对两个序列做内积(对应元素相乘,再求和)并将内积加到一个输入的初始值上。重载版本使用用户定义的操作。
adjacent_difference: 创建一个新序列,新序列中每个新值代表当前元素与上一个元素的差。重载版本用指定二元操作计算相邻元素的差。
<六>生成和异变算法(6个)
fill: 将输入值赋给标志范围内的所有元素。
fill_n: 将输入值赋给first到first+n范围内的所有元素。
for_each: 用指定函数依次对指定范围内所有元素进行迭代访问,返回所指定的函数类型。该函数不得修改序列中的元素。
generate: 连续调用输入的函数来填充指定的范围。
generate_n: 与generate函数类似,填充从指定iterator开始的n个元素。
transform: 将输入的操作作用与指定范围内的每个元素,并产生一个新的序列。重载版本将操作作用在一对元素上,另外一个元素来自输入的另外一个序列。结果输出到指定容器。
<七>关系算法(8个)
equal: 如果两个序列在标志范围内元素都相等,返回true。重载版本使用输入的操作符代替默认的等于操作符。
includes: 判断第一个指定范围内的所有元素是否都被第二个范围包含,使用底层元素的<操作符,成功返回true。重载版本使用用户输入的函数。
lexicographical_compare: 比较两个序列。重载版本使用用户自定义比较操作。
max: 返回两个元素中较大一个。重载版本使用自定义比较操作。
max_element: 返回一个ForwardIterator,指出序列中最大的元素。重载版本使用自定义比较操作。
min: 返回两个元素中较小一个。重载版本使用自定义比较操作。
min_element: 返回一个ForwardIterator,指出序列中最小的元素。重载版本使用自定义比较操作。
mismatch: 并行比较两个序列,指出第一个不匹配的位置,返回一对iterator,标志第一个不匹配元素位置。如果都匹配,返回每个容器的last。重载版本使用自定义的比较操作。
<八>集合算法(4个)
set_union: 构造一个有序序列,包含两个序列中所有的不重复元素。重载版本使用自定义的比较操作。
set_intersection: 构造一个有序序列,其中元素在两个序列中都存在。重载版本使用自定义的比较操作。
set_difference: 构造一个有序序列,该序列仅保留第一个序列中存在的而第二个中不存在的元素。重载版本使用自定义的比较操作。
set_symmetric_difference: 构造一个有序序列,该序列取两个序列的对称差集(并集-交集)。
<九>堆算法(4个)
make_heap: 把指定范围内的元素生成一个堆。重载版本使用自定义比较操作。
pop_heap: 并不真正把最大元素从堆中弹出,而是重新排序堆。它把first和last-1交换,然后重新生成一个堆。可使用容器的back来访问被"弹出"的元素或者使用pop_back进行真正的删除。重载版本使用自定义的比较操作。
push_heap: 假设first到last-1是一个有效堆,要被加入到堆的元素存放在位置last-1,重新生成堆。在指向该函数前,必须先把元素插入容器后。重载版本使用指定的比较操作。
sort_heap: 对指定范围内的序列重新排序,它假设该序列是个有序堆。重载版本使用自定义比较操作。

C++中有两种类型的容器:顺序容器和关联容器。顺序容器主要有vector、list、deque等。其中vector表示一段连续的内存,基于数组实现,list表示非连续的内存,基于链表实现,deque与vector类似,但是对首元素提供插入和删除的双向支持。关联容器主要有map和set。map是key-value形式,set是单值。map和set只能存放唯一的key,multimap和multiset可以存放多个相同的key。

容器类自动申请和释放内存,因此无需new和delete操作。

一、vector

vector基于模板实现,需包含头文件vector。

1.定义和初始化

    //1.定义和初始化

    vector<int> vec1;    //默认初始化,vec1为空

    vector<int> vec2(vec1);  //使用vec1初始化vec2

    vector<int> vec3(vec1.begin(),vec1.end());//使用vec1初始化vec2

    vector<int> vec4(10);    //10个值为的元素

    vector<int> vec5(10,4);  //10个值为的元素

 

    //2.常用操作方法

    vec1.push_back(100);            //添加元素

    int size = vec1.size();         //元素个数

    bool isEmpty = vec1.empty();    //判断是否为空

    cout<<vec1[0]<<endl;        //取得第一个元素

    vec1.insert(vec1.end(),5,3);    //从vec1.back位置插入个值为的元素

    //vec1.pop_back();              //删除末尾元素

    //vec1.erase(vec1.begin(),vec1.end());//删除之间的元素,其他元素前移

    cout<<(vec1==vec2)?true:false;  //判断是否相等==、!=、>=、<=...

    vector<int>::iterator iter = vec1.begin();    //获取迭代器首地址

    vector<int>::const_iterator c_iter = vec1.begin();   //获取const类型迭代器

    //vec1.clear();                 //清空元素

 

    //3.遍历

    //下标法

    int length = vec1.size();

    for(int i=0;i<length;i++)

    {

       cout<<vec1[i];

    }

    cout<<endl<<endl;

    //迭代器法

    vector<int>::const_iterator iterator = vec1.begin();

    for(;iterator != vec1.end();iterator++)

    {

       cout<<*iterator;

    }

二、list

List是stl实现的双向链表,与 向量(vectors)相比, 它允许快速的插入和删除,但是随机访问却比较慢。需要添加头文件list

    //1.定义和初始化

    list<int> lst1;          //创建空list

    list<int> lst2(3);       //创建含有三个元素的list

    list<int> lst3(3,2); //创建含有三个元素的list

    list<int> lst4(lst2);    //使用lst2初始化lst4

    list<int> lst5(lst2.begin(),lst2.end());  //同lst4

 

    //2.常用操作方法

    lst1.assign(lst2.begin(),lst2.end());  //分配值

    lst1.push_back(10);                    //添加值

    lst1.pop_back();                   //删除末尾值

    lst1.begin();                      //返回首值的迭代器

    lst1.end();                            //返回尾值的迭代器

    lst1.clear();                      //清空值

    bool isEmpty1 = lst1.empty();          //判断为空

    lst1.erase(lst1.begin(),lst1.end());                        //删除元素

    lst1.front();                      //返回第一个元素的引用

    lst1.back();                       //返回最后一个元素的引用

    lst1.insert(lst1.begin(),3,2);         //从指定位置插入个

    lst1.rbegin();                         //返回第一个元素的前向指针

    lst1.remove(2);                        //相同的元素全部删除

    lst1.reverse();                        //反转

    lst1.size();                       //含有元素个数

    lst1.sort();                       //排序

    lst1.unique();                         //删除相邻重复元素

 

    //3.遍历

    //迭代器法

    for(list<int>::const_iterator iter = lst1.begin();iter != lst1.end();iter++)

    {

       cout<<*iter;

    }

    cout<<endl;

三、deque

deque容器类与vector类似,支持随机访问和快速插入删除,它在容器中某一位置上的操作所花费的是线性时间。与vector不同的是,deque还支持从开始端插入数据:push_front()。其余类似vector操作方法的使用。

四、map

C++中map容器提供一个键值对(key/value)容器,map与multimap差别仅仅在于multiple允许一个键对应多个值。需要包含头文件map。对于迭代器来说,可以修改实值,而不能修改key。Map会根据key自动排序。

    //1.定义和初始化

    map<int,string> map1;                  //空map

   

    //2.常用操作方法

    map1[3] = "Saniya";                    //添加元素

    map1.insert(map<int,string>::value_type(2,"Diyabi"));//插入元素

    //map1.insert(pair<int,string>(1,"Siqinsini"));

    map1.insert(make_pair<int,string>(4,"V5"));

    string str = map1[3];                  //根据key取得value,key不能修改

    map<int,string>::iterator iter_map = map1.begin();//取得迭代器首地址

    int key = iter_map->first;             //取得eky

    string value = iter_map->second;       //取得value

    map1.erase(iter_map);                  //删除迭代器数据

    map1.erase(3);                         //根据key删除value

    map1.size();                       //元素个数

    map1.empty();                       //判断空

    map1.clear();                      //清空所有元素

 

    //3.遍历

    for(map<int,string>::iterator iter = map1.begin();iter!=map1.end();iter++)

    {

       int keyk = iter->first;

       string valuev = iter->second;

    }

五、set

set的含义是集合,它是一个有序的容器,里面的元素都是排序好的,支持插入,删除,查找等操作,就像一个集合一样。所有的操作的都是严格在logn时间之内完成,效率非常高。set和multiset的区别是:set插入的元素不能相同,但是multiset可以相同。Set默认自动排序。使用方法类似list。

六、各种容器总结(转自:http://hi.baidu.com/ewook/item/514fc22ecde5940e73863e65)

(1) vector
内部数据结构:数组。
随机访问每个元素,所需要的时间为常量。
在末尾增加或删除元素所需时间与元素数目无关,在中间或开头增加或删除元素所需时间随元素数目呈线性变化。
可动态增加或减少元素,内存管理自动完成,但程序员可以使用reserve()成员函数来管理内存。
vector的迭代器在内存重新分配时将失效(它所指向的元素在该操作的前后不再相同)。当把超过capacity()-size()个元素插入vector中时,内存会重新分配,所有的迭代器都将失效;否则,指向当前元素以后的任何元素的迭代器都将失效。当删除元素时,指向被删除元素以后的任何元素的迭代器都将失效。

(2)deque
内部数据结构:数组。
随机访问每个元素,所需要的时间为常量。
在开头和末尾增加元素所需时间与元素数目无关,在中间增加或删除元素所需时间随元素数目呈线性变化。
可动态增加或减少元素,内存管理自动完成,不提供用于内存管理的成员函数。
增加任何元素都将使deque的迭代器失效。在deque的中间删除元素将使迭代器失效。在deque的头或尾删除元素时,只有指向该元素的迭代器失效。

(3)list
内部数据结构:双向环状链表。
不能随机访问一个元素。
可双向遍历。
在开头、末尾和中间任何地方增加或删除元素所需时间都为常量。
可动态增加或减少元素,内存管理自动完成。
增加任何元素都不会使迭代器失效。删除元素时,除了指向当前被删除元素的迭代器外,其它迭代器都不会失效。

(4)slist
内部数据结构:单向链表。
不可双向遍历,只能从前到后地遍历。
其它的特性同list相似。

(5)stack
适配器,它可以将任意类型的序列容器转换为一个堆栈,一般使用deque作为支持的序列容器。
元素只能后进先出(LIFO)。
不能遍历整个stack。

(6)queue
适配器,它可以将任意类型的序列容器转换为一个队列,一般使用deque作为支持的序列容器。
元素只能先进先出(FIFO)。
不能遍历整个queue。

(7)priority_queue
适配器,它可以将任意类型的序列容器转换为一个优先级队列,一般使用vector作为底层存储方式。
只能访问第一个元素,不能遍历整个priority_queue。
第一个元素始终是优先级最高的一个元素。

(8)set
键和值相等。
键唯一。
元素默认按升序排列。
如果迭代器所指向的元素被删除,则该迭代器失效。其它任何增加、删除元素的操作都不会使迭代器失效。

(9)multiset
键可以不唯一。
其它特点与set相同。

(10)hash_set
与set相比较,它里面的元素不一定是经过排序的,而是按照所用的hash函数分派的,它能提供更快的搜索速度(当然跟hash函数有关)。
其它特点与set相同。

(11)hash_multiset
键可以不唯一。
其它特点与hash_set相同。

(12)map
键唯一。
元素默认按键的升序排列。
如果迭代器所指向的元素被删除,则该迭代器失效。其它任何增加、删除元素的操作都不会使迭代器失效。

(13)multimap
键可以不唯一。
其它特点与map相同。

(14)hash_map
与map相比较,它里面的元素不一定是按键值排序的,而是按照所用的hash函数分派的,它能提供更快的搜索速度(当然也跟hash函数有关)。
其它特点与map相同。

(15)hash_multimap
键可以不唯一。
其它特点与hash_map相同。

 

 

 

一、一般介绍

      STL(Standard Template Library),即标准模板库,是一个具有工业强度的,高效的C++程序库。它被容纳于C++标准程序库(C++ Standard Library)中,是ANSI/ISO C++标准中最新的也是极具革命性的一部分。该库包含了诸多在计算机科学领域里所常用的基本数据结构和基本算法。为广大C++程序员们提供了一个可扩展的应用框架,高度体现了软件的可复用性。

      从逻辑层次来看,在STL中体现了泛型化程序设计的思想(generic programming),引入了诸多新的名词,比如像需求(requirements),概念(concept),模型(model),容器(container),算法(algorithmn),迭代子(iterator)等。与OOP(object-oriented programming)中的多态(polymorphism)一样,泛型也是一种软件的复用技术;

       从实现层次看,整个STL是以一种类型参数化(type parameterized)的方式实现的,这种方式基于一个在早先C++标准中没有出现的语言特性--模板(template)。如果查阅任何一个版本的STL源代码,你就会发现,模板作为构成整个STL的基石是一件千真万确的事情。除此之外,还有许多C++的新特性为STL的实现提供了方便;

 

二、STL的六大组件

  • 容器(Container),是一种数据结构,如list,vector,和deques ,以模板类的方法提供。为了访问容器中的数据,可以使用由容器类输出的迭代器;
  • 迭代器(Iterator),提供了访问容器中对象的方法。例如,可以使用一对迭代器指定list或vector中的一定范围的对象。迭代器就如同一个指针。事实上,C++的指针也是一种迭代器。但是,迭代器也可以是那些定义了operator*()以及其他类似于指针的操作符地方法的类对象;
  • 算法(Algorithm),是用来操作容器中的数据的模板函数。例如,STL用sort()来对一个vector中的数据进行排序,用find()来搜索一个list中的对象,函数本身与他们操作的数据的结构和类型无关,因此他们可以在从简单数组到高度复杂容器的任何数据结构上使用;
  • 仿函数(Function object,仿函数(functor)又称之为函数对象(function object),其实就是重载了()操作符的struct,没有什么特别的地方
  • 迭代适配器(Adaptor)
  • 空间配制器(allocator)其中主要工作包括两部分1.对象的创建与销毁    2.内存的获取与释放

以下主要讨论:容器,迭代器,算法,适配器。如欲详加了解 参见C++ Primer 

 

1.STL容器

1)序列式容器(Sequence containers),每个元素都有固定位置--取决于插入时机和地点,和元素值无关,vector、deque、list;

   Vectors:将元素置于一个动态数组中加以管理,可以随机存取元素(用索引直接存取),数组尾部添加或移除元素非常快速。但是在中部或头部安插元素比较费时;

   Deques:是“double-ended queue”的缩写,可以随机存取元素(用索引直接存取),数组头部和尾部添加或移除元素都非常快速。但是在中部或头部安插元素比较费时;

   Lists:双向链表,不提供随机存取(按顺序走到需存取的元素,O(n)),在任何位置上执行插入或删除动作都非常迅速,内部只需调整一下指针;

2)关联式容器(Associated containers),元素位置取决于特定的排序准则,和插入顺序无关,set、multiset、map、multimap;

   Sets/Multisets:内部的元素依据其值自动排序,Set内的相同数值的元素只能出现一次,Multisets内可包含多个数值相同的元素,内部由二叉树实现(实际上基于红黑树(RB-tree)实现),便于查找;

   Maps/Multimaps:Map的元素是成对的键值/实值,内部的元素依据其值自动排序,Map内的相同数值的元素只能出现一次,Multimaps内可包含多个数值相同的元素,内部由二叉树实现(实际上基于红黑树(RB-tree)实现),便于查找;

另外有其他容器hash_map,hash_set,hash_multiset,hash_multimap。

  容器的比较:


VectorDequeListSetMultiSetMapMultiMap内部结构dynamic arrayarray of arraysdouble linked listbinary treebinary treebinary treebinary tree随机存取YesYesNoNoNoYes(key)No搜索速度慢慢很慢快快快快快速插入移除尾部首尾任何位置--------

 

2.STL迭代器 

Iterator(迭代器)模式又称Cursor(游标)模式,用于提供一种方法顺序访问一个聚合对象中各个元素, 
而又不需暴露该对象的内部表示。或者这样说可能更容易理解:Iterator模式是运用于聚合对象的一种模式,通过运用该模式,使得我们可以在不知道对象内部表示的情况下,按照一定顺序(由iterator提供的方法)访问聚合对象中的各个元素。

迭代器的作用:能够让迭代器与算法不干扰的相互发展,最后又能无间隙的粘合起来,重载了*,++,==,!=,=运算符。用以操作复杂的数据结构,容器提供迭代器,算法使用迭代器;

常见的一些迭代器类型:iterator、const_iterator、reverse_iterator和const_reverse_iterator

迭代器一般声明使用示例

vector<T>::iterator it;
list<T>::iterator it;
deque<T>::iterator it;

 

            input         output

              \            /  

                forward

                     |

                bidirectional

                     |

               random access                                       

 


 

要注意,上面这图表并不是表明它们之间的继承关系:而只是描述了迭代器的种类和接口。处于图表下层的迭代器都是相对于处于图表上层迭代器的扩张集。例如:forward迭代器不但拥有input和output迭代器的所有功能,还拥有更多的功能。

各个迭代器的功能如下:

迭代器类别

说明

输入

从容器中读取元素。输入迭代器只能一次读入一个元素向前移动,输入迭代器只支持一遍算法,同一个输入迭代器不能两遍遍历一个序列

输出

向容器中写入元素。输出迭代器只能一次一个元素向前移动。输出迭代器只支持一遍算法,统一输出迭代器不能两次遍历一个序列

正向

组合输入迭代器和输出迭代器的功能,并保留在容器中的位置

双向

组合正向迭代器和逆向迭代器的功能,支持多遍算法

随机访问

组合双向迭代器的功能与直接访问容器中任何元素的功能,即可向前向后跳过任意个元素

迭代器的操作:

每种迭代器均可进行包括表中前一种迭代器可进行的操作。

迭代器操作

说明

所有迭代器

p++

后置自增迭代器

++p

前置自增迭代器

输入迭代器

*p

复引用迭代器,作为右值

p=p1

将一个迭代器赋给另一个迭代器

p==p1

比较迭代器的相等性

p!=p1

比较迭代器的不等性

输出迭代器

*p

复引用迭代器,作为左值

p=p1

将一个迭代器赋给另一个迭代器

正向迭代器

提供输入输出迭代器的所有功能

双向迭代器

--p

前置自减迭代器

p--

后置自减迭代器

随机迭代器

p+=i

将迭代器递增i位

p-=i

将迭代器递减i位

p+i

在p位加i位后的迭代器

p-i

在p位减i位后的迭代器

p[i]

返回p位元素偏离i位的元素引用

p<p1

如果迭代器p的位置在p1前,返回true,否则返回false

p<=p1

p的位置在p1的前面或同一位置时返回true,否则返回false

p>p1

如果迭代器p的位置在p1后,返回true,否则返回false

p>=p1

p的位置在p1的后面或同一位置时返回true,否则返回false

只有顺序容器和关联容器支持迭代器遍历,各容器支持的迭代器的类别如下:

容器

支持的迭代器类别

说明

vector

随机访问

一种随机访问的数组类型,提供了对数组元素进行快速随机访问以及在序列尾部进行快速的插入和删除操作的功能。可以再需要的时候修改其自身的大小

deque

随机访问

一种随机访问的数组类型,提供了序列两端快速进行插入和删除操作的功能。可以再需要的时候修改其自身的大小

list

双向

一种不支持随机访问的数组类型,插入和删除所花费的时间是固定的,与位置无关。

set

双向

一种随机存取的容器,其关键字和数据元素是同一个值。所有元素都必须具有惟一值。

multiset

双向

一种随机存取的容器,其关键字和数据元素是同一个值。可以包含重复的元素。

map

双向

一种包含成对数值的容器,一个值是实际数据值,另一个是用来寻找数据的关键字。一个特定的关键字只能与一个元素关联。

multimap

双向

一种包含成对数值的容器,一个值是实际数据值,另一个是用来寻找数据的关键字。一个关键字可以与多个数据元素关联。

stack

不支持

适配器容器类型,用vector,deque或list对象创建了一个先进后出容器

queue

不支持

适配器容器类型,用deque或list对象创建了一个先进先出容器

priority_queue

不支持

适配器容器类型,用vector或deque对象创建了一个排序队列

 

 3.STL算法

STL算法部分主要由头文件<algorithm>,<numeric>,<functional>组成。要使用 STL中的算法函数必须包含头文件<algorithm>,对于数值算法须包含<numeric>,<functional>中则定义了一些模板类,用来声明函数对象。
STL中算法大致分为四类:
1)、非可变序列算法:指不直接修改其所操作的容器内容的算法。
2)、可变序列算法:指可以修改它们所操作的容器内容的算法。
3)、排序算法:包括对序列进行排序和合并的算法、搜索算法以及有序序列上的集合操作。
4)、数值算法:对容器内容进行数值计算。

 

以下对所有算法进行细致分类并标明功能:
    <一>查找算法(13个):判断容器中是否包含某个值
    adjacent_find:            在iterator对标识元素范围内,查找一对相邻重复元素,找到则返回指向这对元素的第一个元素的ForwardIterator。否则返回last。重载版本使用输入的二元操作符代替相等的判断。
    binary_search:            在有序序列中查找value,找到返回true。重载的版本实用指定的比较函数对象或函数指针来判断相等。
    count:                    利用等于操作符,把标志范围内的元素与输入值比较,返回相等元素个数。
    count_if:                 利用输入的操作符,对标志范围内的元素进行操作,返回结果为true的个数。
    equal_range:              功能类似equal,返回一对iterator,第一个表示lower_bound,第二个表示upper_bound。
    find:                     利用底层元素的等于操作符,对指定范围内的元素与输入值进行比较。当匹配时,结束搜索,返回该元素的一个InputIterator。
    find_end:                 在指定范围内查找"由输入的另外一对iterator标志的第二个序列"的最后一次出现。找到则返回最后一对的第一个ForwardIterator,否则返回输入的"另外一对"的第一个ForwardIterator。重载版本使用用户输入的操作符代替等于操作。
    find_first_of:            在指定范围内查找"由输入的另外一对iterator标志的第二个序列"中任意一个元素的第一次出现。重载版本中使用了用户自定义操作符。
    find_if:                  使用输入的函数代替等于操作符执行find。
    lower_bound:              返回一个ForwardIterator,指向在有序序列范围内的可以插入指定值而不破坏容器顺序的第一个位置。重载函数使用自定义比较操作。
    upper_bound:              返回一个ForwardIterator,指向在有序序列范围内插入value而不破坏容器顺序的最后一个位置,该位置标志一个大于value的值。重载函数使用自定义比较操作。
    search:                   给出两个范围,返回一个ForwardIterator,查找成功指向第一个范围内第一次出现子序列(第二个范围)的位置,查找失败指向last1。重载版本使用自定义的比较操作。
    search_n:                 在指定范围内查找val出现n次的子序列。重载版本使用自定义的比较操作。
 
    <二>排序和通用算法(14个):提供元素排序策略
    inplace_merge:            合并两个有序序列,结果序列覆盖两端范围。重载版本使用输入的操作进行排序。
    merge:                    合并两个有序序列,存放到另一个序列。重载版本使用自定义的比较。
    nth_element:              将范围内的序列重新排序,使所有小于第n个元素的元素都出现在它前面,而大于它的都出现在后面。重载版本使用自定义的比较操作。
    partial_sort:             对序列做部分排序,被排序元素个数正好可以被放到范围内。重载版本使用自定义的比较操作。
    partial_sort_copy:        与partial_sort类似,不过将经过排序的序列复制到另一个容器。
    partition:                对指定范围内元素重新排序,使用输入的函数,把结果为true的元素放在结果为false的元素之前。
    random_shuffle:           对指定范围内的元素随机调整次序。重载版本输入一个随机数产生操作。
    reverse:                  将指定范围内元素重新反序排序。
    reverse_copy:             与reverse类似,不过将结果写入另一个容器。
    rotate:                   将指定范围内元素移到容器末尾,由middle指向的元素成为容器第一个元素。
    rotate_copy:              与rotate类似,不过将结果写入另一个容器。
    sort:                     以升序重新排列指定范围内的元素。重载版本使用自定义的比较操作。
    stable_sort:              与sort类似,不过保留相等元素之间的顺序关系。
    stable_partition:         与partition类似,不过不保证保留容器中的相对顺序。
 
    <三>删除和替换算法(15个)
    copy:                     复制序列
    copy_backward:            与copy相同,不过元素是以相反顺序被拷贝。
    iter_swap:                交换两个ForwardIterator的值。
    remove:                   删除指定范围内所有等于指定元素的元素。注意,该函数不是真正删除函数。内置函数不适合使用remove和remove_if函数。
    remove_copy:              将所有不匹配元素复制到一个制定容器,返回OutputIterator指向被拷贝的末元素的下一个位置。
    remove_if:                删除指定范围内输入操作结果为true的所有元素。
    remove_copy_if:           将所有不匹配元素拷贝到一个指定容器。
    replace:                  将指定范围内所有等于vold的元素都用vnew代替。
    replace_copy:             与replace类似,不过将结果写入另一个容器。
    replace_if:               将指定范围内所有操作结果为true的元素用新值代替。
    replace_copy_if:          与replace_if,不过将结果写入另一个容器。
    swap:                     交换存储在两个对象中的值。
    swap_range:               将指定范围内的元素与另一个序列元素值进行交换。
    unique:                   清除序列中重复元素,和remove类似,它也不能真正删除元素。重载版本使用自定义比较操作。
    unique_copy:              与unique类似,不过把结果输出到另一个容器。
 
    <四>排列组合算法(2个):提供计算给定集合按一定顺序的所有可能排列组合
    next_permutation:         取出当前范围内的排列,并重新排序为下一个排列。重载版本使用自定义的比较操作。
    prev_permutation:         取出指定范围内的序列并将它重新排序为上一个序列。如果不存在上一个序列则返回false。重载版本使用自定义的比较操作。
 

    <五>算术算法(4个)
    accumulate:               iterator对标识的序列段元素之和,加到一个由val指定的初始值上。重载版本不再做加法,而是传进来的二元操作符被应用到元素上。
    partial_sum:              创建一个新序列,其中每个元素值代表指定范围内该位置前所有元素之和。重载版本使用自定义操作代替加法。
    inner_product:            对两个序列做内积(对应元素相乘,再求和)并将内积加到一个输入的初始值上。重载版本使用用户定义的操作。
    adjacent_difference:      创建一个新序列,新序列中每个新值代表当前元素与上一个元素的差。重载版本用指定二元操作计算相邻元素的差。
 
    <六>生成和异变算法(6个)
    fill:                     将输入值赋给标志范围内的所有元素。
    fill_n:                   将输入值赋给first到first+n范围内的所有元素。
    for_each:                 用指定函数依次对指定范围内所有元素进行迭代访问,返回所指定的函数类型。该函数不得修改序列中的元素。
    generate:                 连续调用输入的函数来填充指定的范围。
    generate_n:               与generate函数类似,填充从指定iterator开始的n个元素。
    transform:                将输入的操作作用与指定范围内的每个元素,并产生一个新的序列。重载版本将操作作用在一对元素上,另外一个元素来自输入的另外一个序列。结果输出到指定容器。
 

    <七>关系算法(8个)
    equal:                    如果两个序列在标志范围内元素都相等,返回true。重载版本使用输入的操作符代替默认的等于操作符。
    includes:                 判断第一个指定范围内的所有元素是否都被第二个范围包含,使用底层元素的<操作符,成功返回true。重载版本使用用户输入的函数。
    lexicographical_compare:  比较两个序列。重载版本使用用户自定义比较操作。
    max:                      返回两个元素中较大一个。重载版本使用自定义比较操作。
    max_element:              返回一个ForwardIterator,指出序列中最大的元素。重载版本使用自定义比较操作。
    min:                      返回两个元素中较小一个。重载版本使用自定义比较操作。
    min_element:              返回一个ForwardIterator,指出序列中最小的元素。重载版本使用自定义比较操作。
    mismatch:                 并行比较两个序列,指出第一个不匹配的位置,返回一对iterator,标志第一个不匹配元素位置。如果都匹配,返回每个容器的last。重载版本使用自定义的比较操作。
 

    <八>集合算法(4个)
    set_union:                构造一个有序序列,包含两个序列中所有的不重复元素。重载版本使用自定义的比较操作。
    set_intersection:         构造一个有序序列,其中元素在两个序列中都存在。重载版本使用自定义的比较操作。
    set_difference:           构造一个有序序列,该序列仅保留第一个序列中存在的而第二个中不存在的元素。重载版本使用自定义的比较操作。
    set_symmetric_difference: 构造一个有序序列,该序列取两个序列的对称差集(并集-交集)。
 

   <九>堆算法(4个)
    make_heap:                把指定范围内的元素生成一个堆。重载版本使用自定义比较操作。
    pop_heap:                 并不真正把最大元素从堆中弹出,而是重新排序堆。它把first和last-1交换,然后重新生成一个堆。可使用容器的back来访问被"弹出"的元素或者使用pop_back进行真正的删除。重载版本使用自定义的比较操作。
    push_heap:                假设first到last-1是一个有效堆,要被加入到堆的元素存放在位置last-1,重新生成堆。在指向该函数前,必须先把元素插入容器后。重载版本使用指定的比较操作。
    sort_heap:                对指定范围内的序列重新排序,它假设该序列是个有序堆。重载版本使用自定义比较操作。

 

4.适配器

STL提供了三个容器适配器:queue、priority_queue、stack。这些适配器都是包装了vector、list、deque中某个顺序容器的包装器。注意:适配器没有提供迭代器,也不能同时插入或删除多个元素。下面对各个适配器进行概括总结。


(1)stack用法

#include <stack>
template < typename T, typename Container=deque > class stack;

可以使用三个标准顺序容器vecotr、deque(默认)、list中的任何一个作为stack的底层模型。

bool stack<T>::empty()                               //判断堆栈是否为空
void stack<T>::pop()                                 //弹出栈顶数据
stack<T>::push(T x)                                  //压入一个数据
stack<T>::size_type stack<T>::size()                 //返回堆栈长度
T stack<T>::top()                                    //得到栈顶数据

 代码示例:

stack<int> intDequeStack;  
stack<int,vector<int>> intVectorStack;  
stack<int,list<int>> intListStack; 

 


(2)queue用法

#include <queue>
template<typename T, typename Container = deque<T> > class  queue;

第一个参数指定要在queue中存储的类型,第二个参数规定queue适配的底层容器,可供选择的容器只有dequeue和list。对大多数用途使用默认的dequeue。

复制代码

queue<T>::push(T x)
void queue<T>::pop()
T queue<T>::back()
T queue<T>::front()
queue<T>::size_type 
queue<T>::size()
bool queue<T>::empty()

复制代码

代码示例:

queue<int> intDequeQueue;    
queue<int,list<int>> intListQueue;

 


(3)priority_queue用法

#include <queue>
template <typename T, typename Container = vector<T>, typename Compare = less<T> > class priority_queue;

priority_queue也是一个队列,其元素按有序顺序排列。其不采用严格的FIFO顺序,给定时刻位于队头的元素正是有最高优先级的元素。如果两个元素有相同的优先级,那么它们在队列中的顺序就遵循FIFO语义。默认适配的底层容器是vector,也可以使用deque,list不能用,因为priority_queue要求能对元素随机访问以便进行排序。

复制代码

priority_queue<T>::push(T x)
void priority_queue<T>::pop()
T priority_queue<T>::top()
priority_queue<T>::size_type 
priority_queue<T>::size()
bool priority_queue<T>::empty()

复制代码

代码示例:

priority_queue< int, vector<int>, greater<int> >
priority_queue< int, list<int>, greater<int> >

 

标准库默认使用元素类型的<操作符来确定它们之间的优先级关系,用法有三:(下文转自http://www.cnblogs.com/vvilp/articles/1504436.html)

优先队列第一种用法,通过默认使用的<操作符可知在整数中元素大的优先级高。

priority_queue<int> qi; 

示例中输出结果为:9 6 5 3 2

优先队列第二种用法,建立priority_queue时传入一个比较函数,使用functional.h函数对象作为比较函数。

priority_queue<int, vector<int>, greater<int> >qi2;

示例2中输出结果为:2 3 5 6 9

优先队列第三种用法,是自定义优先级。

复制代码

struct node 
{
     friend bool operator< (node n1, node n2)
     {
         return n1.priority < n2.priority;
     } 
     int priority;
     int value; 
}; 
priority_queue<node> qn; 

复制代码

在示例3中输出结果为:

优先级  值

9          5

8          2

6          1

2          3

1          4

在该结构中,value为值,priority为优先级。通过自定义operator<操作符来比较元素中的优先级。注意:必须是自定义<操作符才行,把上述的结构中的<操作符改成>编译不通过。

 

STL有三大核心部分:容器(Container)、算法(Algorithms)、迭代器(Iterator),容器适配器(container adaptor),函数对象(functor),除此之外还有STL其他标准组件。通俗的讲:

容器:装东西的东西,装水的杯子,装咸水的大海,装人的教室……STL里的容器是可容纳一些数据的模板类。

算法:就是往杯子里倒水,往大海里排污,从教室里撵人……STL里的算法,就是处理容器里面数据的方法、操作。

迭代器:往杯子里倒水的水壶,排污的管道,撵人的那个物业管理人员……STL里的迭代器:遍历容器中数据的对象。对存储于容器中的数据进行处理时,迭代器能从一个成员移向另一个成员。他能按预先定义的顺序在某些容器中的成员间移动。对普通的一维数组、向量、双端队列和列表来说,迭代器是一种指针。

下面让我们来看看专家是怎么说的:

容器(container):容器是数据在内存中组织的方法,例如,数组、堆栈、队列、链表或二叉树(不过这些都不是STL标准容器)。STL中的容器是一种存储T(Template)类型值的有限集合的数据结构,容器的内部实现一般是类。这些值可以是对象本身,如果数据类型T代表的是Class的话。

算法(algorithm):算法是应用在容器上以各种方法处理其内容的行为或功能。例如,有对容器内容排序、复制、检索和合并的算法。在STL中,算法是由模板函数表现的。这些函数不是容器类的成员函数。相反,它们是独立的函数。令人吃惊的特点之一就是其算法如此通用。不仅可以将其用于STL容器,而且可以用于普通的C++数组或任何其他应用程序指定的容器。

迭代器(iterator):一旦选定一种容器类型和数据行为(算法),那么剩下唯一要他做的就是用迭代器使其相互作用。可以把达代器看作一个指向容器中元素的普通指针。可以如递增一个指针那样递增迭代器,使其依次指向容器中每一个后继的元素。迭代器是STL的一个关键部分,因为它将算法和容器连在一起。

下面我将依次介绍STL的这三个主要组件。

1.       容器

STL中的容器有队列容器和关联容器,容器适配器(congtainer adapters:stack,queue,priority queue),位集(bit_set),串包(string_package)等等。
  在本文中,我将介绍list,vector,deque等队列容器,和set和multisets,map和multimaps等关联容器,一共7种基本容器类。
  队列容器(顺序容器):队列容器按照线性排列来存储T类型值的集合,队列的每个成员都有自己的特有的位置。顺序容器有向量类型、双端队列类型、列表类型三种。

u     基本容器——向量

向量(vector容器类):#include ,vector是一种动态数组,是基本数组的类模板。其内部定义了很多基本操作。既然这是一个类,那么它就会有自己的构造函数。vector 类中定义了4中种构造函数:

·  默认构造函数,构造一个初始长度为0的空向量,如:vector v1;

·  带有单个整形参数的构造函数,此参数描述了向量的初始大小。这个构造函数还有一个可选的参数,这是一个类型为T的实例,描述了各个向量种各成员的初始值;如:vector v2(n,0); 如果预先定义了:n,他的成员值都被初始化为0;

·  复制构造函数,构造一个新的向量,作为已存在的向量的完全复制,如:vector v3(v2);

·  带两个常量参数的构造函数,产生初始值为一个区间的向量。区间由一个半开区间[first,last) 来指定。如:vector v4(first,last)

下面一个例子用的是第四种构造方法,其它的方法读者可以自己试试。

view plain

1.      //程序:初始化演示  

2.      #include    

3.      #include   

4.      #include   

5.      using namespace std;  

6.         

7.      int ar[10] = {  12, 45, 234, 64, 12, 35, 63, 23, 12, 55  };  

8.      char* str = "Hello World";  

9.         

10.   int main()  

11.   {  

12.       vector <int> vec1(ar, ar+10);   //first=ar,last=ar+10,不包括ar+10  

13.       vector < char > vec2(str,str+strlen(str)); //first=str,last= str+strlen(str),  

14.       cout<<"vec1:"<

15.       //打印vec1和vec2,const_iterator是迭代器,后面会讲到  

16.       //当然,也可以用for (int i=0; i输出  

17.       //size()是vector的一个成员函数  

18.       for(vector<int>::const_iterator p=vec1.begin();p!=vec1.end(); ++p)  

19.           cout<<*p;  

20.           cout<<'/n'<<"vec2:"<

21.       for(vector< char >::const_iterator p1=vec2.begin();p1!=vec2.end(); ++p1)  

22.           cout<<*p1;  

23.       cout<<'/n';  

24.       return 0;  

25.   }       

 

为了帮助理解向量的概念,这里写了一个小例子,其中用到了vector的成员函数:begin(),end(),push_back(),assign(),front(),back(),erase(),empty(),at(),size()。

 

view plain

1.      #include   

2.      #include   

3.      using namespace std;  

4.         

5.      typedef vector<int> INTVECTOR;//自定义类型INTVECTOR  

6.      //测试vector容器的功能  

7.         

8.      int main()  

9.      {  

10.       //vec1对象初始为空  

11.       INTVECTOR vec1;    

12.       //vec2对象最初有10个值为6的元素    

13.       INTVECTOR vec2(10,6);   

14.       //vec3对象最初有3个值为6的元素,拷贝构造  

15.       INTVECTOR vec3(vec2.begin(),vec2.begin()+3);   

16.       //声明一个名为i的双向迭代器  

17.       INTVECTOR::iterator i;  

18.       //从前向后显示vec1中的数据  

19.       cout<<"vec1.begin()--vec1.end():"<

20.       for (i =vec1.begin(); i !=vec1.end(); ++i)  

21.           cout << *i << " ";  

22.       cout << endl;  

23.       //从前向后显示vec2中的数据  

24.       cout<<"vec2.begin()--vec2.end():"<

25.       for (i =vec2.begin(); i !=vec2.end(); ++i)  

26.           cout << *i << " ";  

27.       cout << endl;  

28.       //从前向后显示vec3中的数据  

29.       cout<<"vec3.begin()--vec3.end():"<

30.       for (i =vec3.begin(); i !=vec3.end(); ++i)  

31.           cout << *i << " ";  

32.       cout << endl;  

33.       //测试添加和插入成员函数,vector不支持从前插入  

34.       vec1.push_back(2);//从后面添加一个成员  

35.       vec1.push_back(4);  

36.       vec1.insert(vec1.begin()+1,5);//在vec1第一个的位置上插入成员5  

37.       //从vec1第一的位置开始插入vec3的所有成员  

38.       vec1.insert(vec1.begin()+1,vec3.begin(),vec3.end());  

39.       cout<<"after push() and insert() now the vec1 is:" <

40.       for (i =vec1.begin(); i !=vec1.end(); ++i)  

41.           cout << *i << " ";  

42.       cout << endl;  

43.       //测试赋值成员函数  

44.       vec2.assign(8,1);   // 重新给vec2赋值,8个成员的初始值都为1  

45.       cout<<"vec2.assign(8,1):" <

46.       for (i =vec2.begin(); i !=vec2.end(); ++i)  

47.           cout << *i << " ";  

48.       cout << endl;  

49.       //测试引用类函数  

50.       cout<<"vec1.front()="<//vec1第零个成员  

51.       cout<<"vec1.back()="<//vec1的最后一个成员  

52.       cout<<"vec1.at(4)="<//vec1的第五个成员  

53.       cout<<"vec1[4]="<

54.       //测试移出和删除  

55.       vec1.pop_back();//将最后一个成员移出vec1  

56.       vec1.erase(vec1.begin()+1,vec1.end()-2);//删除成员  

57.       cout<<"vec1.pop_back() and vec1.erase():" <

58.       for (i =vec1.begin(); i !=vec1.end(); ++i)  

59.           cout << *i << " ";  

60.       cout << endl;  

61.       //显示序列的状态信息  

62.       cout<<"vec1.size(): "<//打印成员个数  

63.       cout<<"vec1.empty(): "<//清空  

64.   }  

 

push_back()是将数据放入vector(向量)或deque(双端队列)的标准函数。Insert()是一个与之类似的函数,然而它在所有容器中都可以使用,但是用法更加复杂。end()实际上是取末尾加一,以便让循环正确运行--它返回的指针指向最靠近数组界限的数据。

在Java里面也有向量的概念。Java中的向量是对象的集合。其中,各元素可以不必同类型,元素可以增加和删除,不能直接加入原始数据类型。

 

u     双端队列(qeque容器类):

deque(读音:deck,意即:double queue,#include)容器类与vector类似,支持随机访问和快速插入删除,它在容器中某一位置上的操作所花费的是线性时间。与vector不同的是,deque还支持从开始端插入数据:push_front()。此外deque也不支持与vector的capacity()、reserve()类似的操作。

view plain

1.      #include   

2.      #include   

3.      using namespace std;  

4.         

5.      typedef deque<int> INTDEQUE;//有些人很讨厌这种定义法,呵呵  

6.         

7.      //从前向后显示deque队列的全部元素  

8.      void put_deque(INTDEQUE deque, char *name)  

9.      {  

10.       INTDEQUE::iterator pdeque;//仍然使用迭代器输出  

11.       cout << "The contents of " << name << " : ";  

12.       for(pdeque = deque.begin(); pdeque != deque.end(); pdeque++)  

13.           cout << *pdeque << " ";//注意有 "*"号哦,没有"*"号的话会报错  

14.       cout<

15.   }  

16.      

17.   //测试deqtor容器的功能  

18.   int main()  

19.   {  

20.       //deq1对象初始为空  

21.       INTDEQUE deq1;    

22.       //deq2对象最初有10个值为6的元素    

23.       INTDEQUE deq2(10,6);   

24.       //声明一个名为i的双向迭代器变量  

25.       INTDEQUE::iterator i;  

26.       //从前向后显示deq1中的数据  

27.       put_deque(deq1,"deq1");  

28.       //从前向后显示deq2中的数据  

29.       put_deque(deq2,"deq2");  

30.       //从deq1序列后面添加两个元素  

31.       deq1.push_back(2);  

32.       deq1.push_back(4);  

33.       cout<<"deq1.push_back(2) and deq1.push_back(4):"<

34.       put_deque(deq1,"deq1");  

35.       //从deq1序列前面添加两个元素  

36.       deq1.push_front(5);  

37.       deq1.push_front(7);  

38.       cout<<"deq1.push_front(5) and deq1.push_front(7):"<

39.       put_deque(deq1,"deq1");  

40.       //在deq1序列中间插入数据  

41.       deq1.insert(deq1.begin()+1,3,9);  

42.       cout<<"deq1.insert(deq1.begin()+1,3,9):"<

43.       put_deque(deq1,"deq1");  

44.       //测试引用类函数  

45.       cout<<"deq1.at(4)="<

46.       cout<<"deq1[4]="<

47.       deq1.at(1)=10;  

48.       deq1[2]=12;  

49.       cout<<"deq1.at(1)=10 and deq1[2]=12 :"<

50.       put_deque(deq1,"deq1");  

51.       //从deq1序列的前后各移去一个元素  

52.       deq1.pop_front();  

53.       deq1.pop_back();  

54.       cout<<"deq1.pop_front() and deq1.pop_back():"<

55.       put_deque(deq1,"deq1");  

56.       //清除deq1中的第2个元素  

57.       deq1.erase(deq1.begin()+1);  

58.       cout<<"deq1.erase(deq1.begin()+1):"<

59.       put_deque(deq1,"deq1");  

60.       //对deq2赋值并显示  

61.       deq2.assign(8,1);  

62.       cout<<"deq2.assign(8,1):"<

63.       put_deque(deq2,"deq2");  

64.   }  

 

上面我们演示了deque如何进行插入删除等操作,像erase(),assign()是大多数容器都有的操作。关于deque的其他操作请参阅其他书籍。

u     表(List容器类)

 List(#include)又叫链表,是一种双线性列表,只能顺序访问(从前向后或者从后向前),图2是list的数据组织形式。与前面两种容器类有一个明显的区别就是:它不支持随机访问。要访问表中某个下标处的项需要从表头或表尾处(接近该下标的一端)开始循环。而且缺少下标预算符:operator[]。

 

 

图2 
  同时,list仍然包涵了erase(),begin(),end(),insert(),push_back(),push_front()这些基本函数,下面我们来演示一下list的其他函数功能。merge():合并两个排序列表;splice():拼接两个列表;sort():列表的排序。

view plain

1.      #include   

2.      #include   

3.      #include   

4.      using namespace std;  

5.         

6.      void PrintIt(list<int> n)  

7.      {  

8.          for(list<int>::iterator iter=n.begin(); iter!=n.end(); ++iter)  

9.            cout<<*iter<<" ";//用迭代器进行输出循环  

10.   }  

11.        

12.   int main()  

13.   {  

14.       list<int> listn1,listn2;    //给listn1,listn2初始化  

15.       listn1.push_back(123);  

16.       listn1.push_back(0);  

17.       listn1.push_back(34);  

18.       listn1.push_back(1123);    //now listn1:123,0,34,1123  

19.       listn2.push_back(100);  

20.       listn2.push_back(12);    //now listn2:12,100  

21.       listn1.sort();  

22.       listn2.sort();    //给listn1和listn2排序  

23.       //now listn1:0,34,123,1123         listn2:12,100  

24.       PrintIt(listn1);  

25.       cout<

26.       PrintIt(listn2);  

27.       listn1.merge(listn2);    //合并两个排序列表后,listn1:0,12,34,100,123,1123  

28.       cout<

29.       PrintIt(listn1);  

30.   }  

 

上面并没有演示splice()函数的用法,这是一个拗口的函数。用起来有点麻烦。图3所示是splice函数的功能。将一个列表插入到另一个列表当中。list容器类定义了splice()函数的3个版本:

splice(position,list_value);

splice(position,list_value,ptr);

splice(position,list_value,first,last);

list_value是一个已存在的列表,它将被插入到源列表中,position是一个迭代参数,他当前指向的是要进行拼接的列表中的特定位置。

                                  图3

listn1:123,0,34,1123   listn2:12,100

执行listn1.splice(find(listn1.begin(),listn1.end(),0),listn2);之后,listn1将变为:123,12,100,34,1123。即把listn2插入到listn1的0这个元素之前。其中,find()函数找到0这个元素在listn1中的位置。值得注意的是,在执行splice之后,list_value将不复存在了。这个例子中是listn2将不再存在。
  第二个版本当中的ptr是一个迭代器参数,执行的结果是把ptr所指向的值直接插入到position当前指向的位置之前.这将只向源列表中插入一个元素。
  第三个版本的first和last也是迭代器参数,并不等于list_value.begin(),list_value.end()。First指的是要插入的列的第一个元素,last指的是要插入的列的最后一个元素。

如果listn1:123,0,34,1123 listn2:12,43,87,100 执行完以下函数之后

listn1.splice(find(listn1.begin(),listn1.end(),0),++listn2.begin(),--listn2.end());

listn1:123,43,87,0,34,1123  listn2:12,100

以上,我们学习了vector,deque,list三种基本顺序容器,其他的顺序容器还有:slist,bit_vector等等。

u     集和多集(set 和multiset 容器类):

一个集合(#include)是一个容器,它其中所包含的元素的值是唯一的。这在收集一个数据的具体值的时候是有用的。集合中的元素按一定的顺序排列,并被作为集合中的实例。如果你需要一个键/值对(pair)来存储数据,map(也是一个关联容器,后面将马上要讲到)是一个更好的选择。一个集合通过一个链表来组织,在插入操作和删除操作上比向量(vector)快,但查找或添加末尾的元素时会有些慢。

在集中,所有的成员都是排列好的。如果先后往一个集中插入:12,2,3,123,5,65   则输出该集时为:2,3,5,12,65,123

集和多集的区别是:set支持唯一键值,set中的值都是特定的,而且只出现一次;而multiset中可以出现副本键,同一值可以出现多次。

Set和multiset的模板参数:

template

第一个参数key是所存储的键的类型,第二个参数是为排序值而定义的比较函数的类型,第三个参数是被实现的存储分配符的类型。在有些编译器的具体实现中,第三个参数可以省略。第二个参数使用了合适形式的迭代器为键定义了特定的关系操作符,并用来在容器中遍历值时建立顺序。集的迭代器是双向,同时也是常量的,所以迭代器在使用的时候不能修改元素的值。

Set定义了三个构造函数:
默认构造函数:

explicit set(const Compare&=compare());

如:set > set1;

less是一个标准类,用于形成降序排列函数对象。升序排列是用greater。通过指定某一预先定义的区间来初始化set对象的构造函数:

template set(InputIterator, InputIterator,/ const Compare&=compare());

如:set >set2(vector1.begin(),vector1.end());

复制构造函数:

set(const set);

如:set >set3(set2);

下面我们来看一个简单的集和多集的插入例程:

view plain

1.      #include   

2.      #include   

3.      using namespace std;  

4.         

5.      int main()  

6.      {  

7.          set<int> set1;  

8.          for(int i=0; i<10; ++i)  

9.              set1.insert(i);  

10.       for(set<int>::iterator p=set1.begin();p!=set1.end();++p)  

11.           cout<<*p<<"";  

12.       if(set1.insert(3).second)//把3插入到set1中  

13.   //插入成功则set1.insert(3).second返回1,否则返回0  

14.   //此例中,集中已经有3这个元素了,所以插入将失败  

15.           cout<<"set insert success";  

16.       else  

17.           cout<<"set insert failed";  

18.       int a[] = {4, 1, 1, 1, 1, 1, 0, 5, 1, 0};  

19.       multiset<int> A;  

20.       A.insert(set1.begin(),set1.end());  

21.       A.insert(a,a+10);  

22.       cout<

23.       for(multiset<int>::iterator p=A.begin();p!=A.end();++p)  

24.       cout<<*p<<" ";  

25.       return 0;  

26.   }  

 

u     映射和多重映射(map 和multimap)

映射和多重映射(#include)基于某一类型Key的键集的存在,提供对T类型的数据进行快速和高效的检索。对map而言,键只是指存储在容器中的某一成员。Map不支持副本键,multimap支持副本键。Map和multimap对象包涵了键和各个键有关的值,键和值的数据类型是不相同的,这与set不同。set中的key和value是Key类型的,而map中的key和value是一个pair结构中的两个分量。Map支持下表运算符operator[],用访问普通数组的方式访问map,不过下标为map的键。在multimap中一个键可以对应多个不同的值。

下面的例程说明了map中键与值的关系。

#include

#include

using namespace std;

 

int main()

{

    map > map1;

    map >::iterator mapIter;

    //char 是键的类型,int是值的类型

    //下面是初始化,与数组类似

    //也可以用map1.insert(map >::value_type(''c'',3));

    map1['c']=3;

    map1['d']=4;

    map1['a']=1;

    map1['b']=2;

    for(mapIter=map1.begin();mapIter!=map1.end();++mapIter)

        cout<<" "<<(*mapIter).first<<": "<<(*mapIter).second;

    //first对应定义中的char键,second对应定义中的int值  

    //检索对应于d键的值是这样做的:

    map >::const_iterator ptr;

    ptr=map1.find('d');

    cout<<'/n'<<" "<<(*ptr).first<<" 键对应于值:"<<(*ptr).second;

    return 0;

}

  从以上例程中,我们可以看到map对象的行为和一般数组的行为类似。Map允许两个或多个值使用比较操作符。下面我们再看看multimap:

view plain

1.      #include   

2.      #include   

3.      #include   

4.      using namespace std;  

5.         

6.      int main()  

7.      {  

8.          multimap >mulmap;  

9.          multimap >::iterator p;  

10.       //初始化多重映射mulmap:  

11.       typedef multimap >::value_type vt;  

12.       typedef string s;  

13.       mulmap.insert(vt(s("Tom "),s("is a student")));  

14.       mulmap.insert(vt(s("Tom "),s("is a boy")));  

15.       mulmap.insert(vt(s("Tom "),s("is a bad boy of blue!")));  

16.       mulmap.insert(vt(s("Jerry "),s("is a student")));  

17.       mulmap.insert(vt(s("Jerry "),s("is a beatutiful girl")));  

18.       mulmap.insert(vt(s("DJ "),s("is a student")));  

19.       //输出初始化以后的多重映射mulmap:  

20.       for(p=mulmap.begin();p!=mulmap.end();++p)  

21.           cout<<(*p).first<<(*p).second<

22.       //检索并输出Jerry键所对应的所有的值  

23.       cout<<"find Jerry :"<

24.       p=mulmap.find(s("Jerry "));  

25.       while((*p).first=="Jerry ")  

26.       {  

27.           cout<<(*p).first<<(*p).second<

28.           ++p;  

29.       }     

30.       return 0;  

31.   }   

 

在map中是不允许一个键对应多个值的,在multimap中,不支持operator[],也就是说不支持map中允许的下标操作。

2.       算法(algorithm):

#inlcude

STL中算法的大部分都不作为某些特定容器类的成员函数,他们是泛型的,每个算法都有处理大量不同容器类中数据的使用。值得注意的是,STL中的算法大多有多种版本,用户可以依照具体的情况选择合适版本。中在STL的泛型算法中有4类基本的算法:

变序型队列算法:可以改变容器内的数据;

非变序型队列算法:处理容器内的数据而不改变他们;

排序值算法:包涵对容器中的值进行排序和合并的算法,还有二叉搜索算法、通用数值算法。(注:STL的算法并不只是针对STL容器,对一般容器也是适用的。)

变序型队列算法:又叫可修改的序列算法。这类算法有复制(copy)算法、交换(swap)算法、替代(replace)算法、删除(clear)算法,移动(remove)算法、翻转(reverse)算法等等。这些算法可以改变容器中的数据(数据值和值在容器中的位置)。

下面介绍2个比较常用的算法reverse()和copy()。

view plain

1.      #include   

2.      #include   

3.      #include   

4.      //下面用到了输出迭代器ostream_iterator  

5.      using namespace std;  

6.         

7.      int main()  

8.      {  

9.          int arr[6]={1,12,3,2,1215,90};  

10.       int arr1[7];  

11.       int arr2[6]={2,5,6,9,0,-56};  

12.       copy(arr,(arr+6),arr1);//将数组aar复制到arr1  

13.       cout<<"arr[6] copy to arr1[7],now arr1: "<

14.       for(int i=0;i<7;i++)  

15.           cout<<" "<

16.       reverse(arr,arr+6);//将排好序的arr翻转  

17.       cout<<'/n'<<"arr reversed ,now arr:"<

18.       copy(arr,arr+6,ostream_iterator<int>(cout, " "));//复制到输出迭代器  

19.       swap_ranges(arr,arr+6,arr2);//交换arr和arr2序列  

20.       cout<<'/n'<<"arr swaped to arr2,now arr:"<

21.       copy(arr,arr+6,ostream_iterator<int>(cout, " "));  

22.       cout<<'/n'<<"arr2:"<

23.       copy(arr2,arr2+6,ostream_iterator<int>(cout, " "));  

24.       return 0;  

25.   }  

 

revese()的功能是将一个容器内的数据顺序翻转过来,它的原型是:

template

void reverse(Bidirectional first, Bidirectional last);

将first和last之间的元素翻转过来,上例中你也可以只将arr中的一部分进行翻转:

reverse(arr+3,arr+6); 这也是有效的。First和last需要指定一个操作区间。

Copy()是要将一个容器内的数据复制到另一个容器内,它的原型是:

  Template,class OutputIterator>

  OutputIterator copy(InputIterator first, InputIterator last, OutputIterator result);

它把[first,last-1]内的队列成员复制到区间[result,result+(last-first)-1]中。泛型交换算法:

 

Swap()操作的是单值交换,它的原型是:

template

void swap(T& a,T& b);

 

swap_ranges()操作的是两个相等大小区间中的值,它的原型是:

  template

  ForwardIterator2swap_ranges(ForwardIterator1 first1,ForwardIterator1 last1, ForwardIterator1 first2);

交换区间[first1,last1-1]和[first2, first2+(last1-first1)-1]之间的值,并假设这两个区间是不重叠的。

非变序型队列算法,又叫不可修改的序列算法。这一类算法操作不影响其操作的容器的内容,包括搜索队列成员算法,等价性检查算法,计算队列成员个数的算法。我将用下面的例子介绍其中的find(),search(),count():

view plain

1.      #include   

2.      #include   

3.      #include   

4.      using namespace std;  

5.         

6.      int main()  

7.      {  

8.          int a[10]={12,31,5,2,23,121,0,89,34,66};  

9.          vector<int> v1(a,a+10);  

10.       vector<int>::iterator result1,result2;//result1和result2是随机访问迭代器  

11.       result1=find(v1.begin(),v1.end(),2);  

12.       //在v1中找到2,result1指向v1中的2  

13.       result2=find(v1.begin(),v1.end(),8);  

14.       //在v1中没有找到8,result2指向的是v1.end()  

15.       cout<//3-0=3或4-1=3,屏幕结果是3  

16.       cout<

17.       int b[9]={5,2,23,54,5,5,5,2,2};  

18.       vector<int> v2(a+2,a+8);  

19.       vector<int> v3(b,b+4);  

20.       result1=search(v1.begin(),v1.end(),v2.begin(),v2.end());  

21.       cout<<*result1<

22.       //在v1中找到了序列v2,result1指向v2在v1中开始的位置  

23.        result1=search(v1.begin(),v1.end(),v3.begin(),v3.end());  

24.        cout<<*(result1-1)<

25.       //在v1中没有找到序列v3,result指向v1.end(),屏幕打印出v1的最后一个元素66     

26.        vector<int> v4(b,b+9);  

27.        int i=count(v4.begin(),v4.end(),5);  

28.        int j=count(v4.begin(),v4.end(),2);  

29.        cout<<"there are "<" members in v4 equel to 5"<

30.        cout<<"there are "<" members in v4 equel to 2"<

31.        //计算v4中有多少个成员等于 5,2  

32.        return 0;          

33.   }  

 

find()的原型是:

template,class EqualityComparable>

InputIterator find(InputIterator first, InputIterator last, const EqualityComparable& value);

其功能是在序列[first,last-1]中查找value值,如果找到,就返回一个指向value在序列中第一次出现的迭代,如果没有找到,就返回一个指向last的迭代(last并不属于序列)。

search()的原型是:

template

ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1,                        ForwardIterator2 first2, ForwardIterator2 last2);

其功能是在源序列[first1,last1-1]查找目标序列[first2,last2-1]如果查找成功,就返回一个指向源序列中目标序列出现的首位置的迭代。查找失败则返回一个指向last的迭代。

Count()的原型是:

template

iterator_traits::difference_type count(InputIterator first,

InputIterator last, const EqualityComparable& value);

其功能是在序列[first,last-1]中查找出等于value的成员,返回等于value得成员的个数。

排序算法(sort algorithm):这一类算法很多,功能强大同时也相对复杂一些。这些算法依赖的是关系运算。在这里我只介绍其中比较简单的几种排序算法:sort(),merge(),includes()

view plain

1.      #include   

2.      #include   

3.      using namespace std;  

4.         

5.      int main()  

6.      {  

7.          int a[10]={12,0,5,3,6,8,9,34,32,18};  

8.          int b[5]={5,3,6,8,9};  

9.          int d[15];  

10.       sort(a,a+10);  

11.       for(int i=0;i<10;i++)  

12.         cout<<" "<

13.       sort(b,b+5);  

14.       if(includes(a,a+10,b,b+5))  

15.          cout<<'/n'<<"sorted b members are included in a."<

16.       else  

17.          cout<<"sorted a dosn`t contain sorted b!";  

18.       merge(a,a+10,b,b+5,d);  

19.       for(int j=0;j<15;j++)  

20.          cout<<" "<

21.       return 0;  

22.   }  

 

sort()的原型是:

template

void sort(RandomAccessIterator first, RandomAccessIterator last);

功能是对[first,last-1]区间内的元素进行排序操作。与之类似的操作还有:partial_sort(), stable_sort(),partial_sort_copy()等等。

merge()的原型是:

template

OutputIterator merge(InputIterator1 first1, InputIterator1 last1,InputIterator2  first2, InputIterator2 st2,OutputIterator result);

将有序区间[first1,last1-1]和[first2,last2-1]合并到[result, result + (last1 - first1) + (last2 - first2)-1]区间内。

Includes()的原型是:

template

bool includes(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2);

其功能是检查有序区间[first2,last2-1]内元素是否都在[first1,last1-1]区间内,返回一个bool值。

通用数值算法(generalized numeric algorithms):这一类算法还不多,涉及到专业领域中有用的算术操作,独立包涵于头文件中。
  STL中的算法大都有多种版本,常见的版本有以下4中:

默认版本,假设给出了特定操作符;

一般版本,使用了成员提供的操作符;

复制版本,对原队列的副本进行操作,常带有 _copy 后缀;

谓词版本,只应用于满足给定谓词的队列成员,常带有 _if 后缀;

 

以上我们学习了STL容器和算法的概念,以及一些简单的STL容器和算法。在使用算法处理容器内的数据时,需要从一个数据成员移向另一个数据成员,迭代器恰好实现了这一功能。下面我们来学习STL迭代器 。

3.       迭代器(itertor):

#include

迭代器实际上是一种泛化指针,如果一个迭代器指向了容器中的某一成员,那么迭代器将可以通过自增自减来遍历容器中的所有成员。迭代器是联系容器和算法的媒介,是算法操作容器的接口。在运用算法操作容器的时候,我们常常在不知不觉中已经使用了迭代器。
STL中定义了6种迭代器:

输入迭代器,在容器的连续区间内向前移动,可以读取容器内任意值;

输出迭代器,把值写进它所指向的队列成员中;

前向迭代器,读取队列中的值,并可以向前移动到下一位置(++p,p++);

双向迭代器,读取队列中的值,并可以向前向后遍历容器;

随机访问迭代器, vector::iterator,list::iterator等都是这种迭代器 ;

流迭代器,可以直接输出、输入流中的值;

实际上,在前面的例子中,我们不停的在用迭代器。下面我们用几个例子来帮助理解这些迭代器的用法。
下面的例子用到了输入输出迭代器:

view plain

1.      #include   

2.      #include   

3.      #include   

4.      #include   

5.      #include   

6.      using namespace std;  

7.         

8.      int main()  

9.      {  

10.       vector v1;  

11.       ifstream file("Text1.txt");  

12.       if(file.fail())  

13.       {  

14.           cout<<"open file Text1.txt failed"<

15.           return 1;  

16.       }     

17.       copy(istream_iterator(file),istream_iterator(),inserter(v1,v1.begin()));  

18.       copy(v1.begin(),v1.end(),ostream_iterator(cout," "));  

19.       cout<

20.       return 0;  

21.   }  

 

这里用到了输入迭代器istream_iterator,输出迭代器ostream_iterator。程序完成了将一个文件输出到屏幕的功能,先将文件读入,然后通过输入迭代器把文件内容复制到类型为字符串的向量容器内,最后由输出迭代器输出。Inserter是一个输入迭代器的一个函数(迭代器适配器),它的使用方法是:

inserter (container ,pos);

container是将要用来存入数据的容器,pos是容器存入数据的开始位置。上例中,是把文件内容存入(copy())到向量v1中。

4.       STL的其他标准组件

函数对象(functor或者funtion objects)

#include

函数对象又称之为仿函数。函数对象将函数封装在一个对象中,使得它可作为参数传递给合适的STL算法,从而使算法的功能得以扩展。可以把它当作函数来使用。用户也可以定义自己的函数对象。下面让我们来定义一个自己的函数对象.

view plain

1.      #include   

2.      using namespace std;  

3.         

4.      struct int_max{  

5.      int operator()(int x,int y){return x>y?x:y; }  

6.      };//operator() 重载了"()", (int x,int y)是参数列表  

7.         

8.      int main()  

9.      {  

10.       cout<

11.       return 0;  

12.   }  

 

这里的int_max()就是一个函数对象,struct关键字也可以用class来代替,只不过struct默认情况下是公有访问权限,而class定义的是默认私有访问权限。下面我们来定义一个STL风格的函数对象:

view plain

1.      #include   

2.      #include   

3.      using namespace std;  

4.         

5.      struct adder : public unary_function<doublevoid>  

6.      {  

7.          adder() : sum(0) {}  

8.          double sum;  

9.          void operator()(double x) { sum += x; }  

10.   };  

11.      

12.   int main()  

13.   {    

14.       double a[5]={0.5644,1.1,6.6,8.8,9.9};  

15.       vector<double> V(a,a+5);  

16.       adder result = for_each(V.begin(), V.end(), adder());  

17.       cout << "The sum is " << result.sum << endl;  

18.       return 0;  

19.   }  

 

在这里,我们定义了一个函数对象adder(),这也是一个类,它的基类是unary_function函数对象。unary_function是一个空基类,不包涵任何操作或变量。只是一种格式说明,它有两个参数,第一个参数是函数对象的使用数据类型,第二个参数是它的返回类型。基于它所定义的函数对象是一元函数对象。(注:用关键字struct或者class定义的类型实际上都是"类")

STL内定义了各种函数对象,否定器、约束器、一元谓词、二元谓词都是常用的函数对象。函数对象对于编程来说很重要,因为他如同对象类型的抽象一样作用于操作。

适配器(adapter)

适配器是用来修改其他组件接口的STL组件,是带有一个参数的类模板(这个参数是操作的值的数据类型)。STL定义了3种形式的适配器:容器适配器,迭代器适配器,函数适配器。

容器适配器:包括栈(stack)、队列(queue)、优先(priority_queue)。使用容器适配器,stack就可以被实现为基本容器类型(vector,dequeue,list)的适配。可以把stack看作是某种特殊的vctor、deque或者list容器,只是其操作仍然受到stack本身属性的限制。queue和priority_queue与之类似。容器适配器的接口更为简单,只是受限比一般容器要多;

迭代器适配器:修改为某些基本容器定义的迭代器的接口的一种STL组件。反向迭代器和插入迭代器都属于迭代器适配器,迭代器适配器扩展了迭代器的功能;

函数适配器:通过转换或者修改其他函数对象使其功能得到扩展。这一类适配器有否定器(相当于"非"操作)、帮定器、函数指针适配器。

0
0
0
周骞珏
周骞珏
中级守护
中级守护

构造结构

deque c || 建造一个空的depue. 
depue c1 || 复制depue. 
depue c(n) || 建造depue,含有n个数据.数据均由缺省构造函数产生. 
depue c (n,elem)|| 创建一个含有n个elem拷贝的depue. 
depue c(beg,end) || 创建一个以[beg;end]区间的depue. 
c~depue 0 || 销毁所有数据,释放内存.

赋值

c.assign(beg,end) || 将[beg;end]区间内的数据赋给c. 
c.assing(n,elem) || 将n个elem的拷贝赋给c.

数据访问

c.at(idx) || 返回索引idx所指的数据,如果idx越界,抛出out_of_range. 
operator[] || 如c.[idx] 返回容器中指定位置的一个引用. 
c.front() || 返回第一个数据. 
c.back() || 返回最后一个数据. 
c.begin() || 返回指向第一个数据的迭代器. 
c.end() || 返回指向最后一个数据的下一个位置的迭代器. 
c.rbegin() || 返回逆向队列的第一个数据. 
c.rend() || 返回指向逆向队列的最后一个数据的下一个位置的迭代器.

加入数据

c.push_back(elem) || 在尾部插入一个数据. 
c.push_front(elem) || 在头部插入一个数据. 
c.incert(pos,elem) || 在pos位置插入一个elem拷贝,返回新数据位置. 
c.insert(pos,n,elem) || 在pos位置插入n个elem数据.无返回值. 
c.insert(pos,beg,end)|| 在pos位置插入在[beg;end]区间的数据,无返回值.

删除数据

c.pop_back() ||删除最后一个数据. 
c.pop_front()|| 删除头部数据. 
c.erase(pos) ||删除pos位置的数据,返回下一个数据的位置. 
c.erase(beg,end) ||删除[beg;end]区间的数据,返回下一个数据的位置.

其他操作

c.empty()|| 判断容器是否为空. 
c.max_size() || 返回容器中最大数据的数量. 
c.resize(num) || 重新指定队列的长度. 
c.size() || 返回数据中实际数据的个数. 
c1.swap(c2) || 将c1和c2数据交换.(swap(c1,c2))

代码如下:

//双向队列 deque  
//by MoreWindows http://blog.csdn.net/morewindows  
#include <deque>  
#include <cstdio>  
#include <algorithm>  
using namespace std;  
int main()  
{  
    deque<int> ideq(20); //Create a deque ideq with 20 elements of default value 0  
    deque<int>::iterator pos;  
    int i;  

    //使用assign()赋值  assign在计算机中就是赋值的意思  
    for (i = 0; i < 20; ++i)  
        ideq[i] = i;  

    //输出deque  
    printf("输出deque中数据:\n");  
    for (i = 0; i < 20; ++i)  
        printf("%d ", ideq[i]);  
    putchar('\n');  

    //在头尾加入新数据  
    printf("\n在头尾加入新数据...\n");  
    ideq.push_back(100);  
    ideq.push_front(i);  

    //输出deque  
    printf("\n输出deque中数据:\n");  
    for (pos = ideq.begin(); pos != ideq.end(); pos++)  
        printf("%d ", *pos);  
    putchar('\n');  

    //查找  
    const int FINDNUMBER = 19;  
    printf("\n查找%d\n", FINDNUMBER);  
    pos = find(ideq.begin(), ideq.end(), FINDNUMBER);  
    if (pos != ideq.end())  
        printf("find %d success\n", *pos);  
    else  
        printf("find failed\n");  

    //在头尾删除数据  
    printf("\n在头尾删除数据...\n");  
    ideq.pop_back();  
    ideq.pop_front();  

    //输出deque  
    printf("\n输出deque中数据:\n");  
    for (pos = ideq.begin(); pos != ideq.end(); pos++)  
        printf("%d ", *pos);  
    putchar('\n');  
    return 0;  
}  
0
0
0
0
袁翊凡
袁翊凡
新手光能
新手光能

STL

 

(模板库)

 编辑

STL是Standard Template Library的简称,中文名标准模板库惠普实验室开发的一系列软件的统称。它是由Alexander Stepanov、Meng Lee和David R Musser在惠普实验室工作时所开发出来的。从根本上说,STL是一些“容器”的集合,这些“容器”有list,vector,set,map等,STL也是算法和其他一些组件的集合。这里的“容器”和算法的集合指的是世界上很多聪明人很多年的杰作。STL的目的是标准化组件,这样就不用重新开发,可以使用现成的组件。STL现在是C++的一部分,因此不用安装额外的库文件。

STL的版本很多,常见的有HP STL、PJ STL、 SGI STL等。

在C++标准中,STL被组织为下面的13个头文件:<algorithm>、<deque>、<functional>、<iterator>、<array>、<vector>、<list>、<forward_list>、<map>、<unordered_map>、<memory>、<numeric>、<queue>、<set>、<unordered_set>、<stack>和<utility>。

中文名

标准模板库

外文名

STL

属    性

模板库

全    称

Standard Template Library

包    括

容器

目录

  1. 组成部分
  2. 容器
  3. 迭代器
  4. 算法

 

组成部分

编辑

STL可分为容器(containers)、迭代器(iterators)、空间配置器(allocator)、配接器(adapters)、算法(algorithms)、仿函数(functors)六个部分。

 

容器

编辑

在实际的开发过程中,数据结构本身的重要性不会逊于操作于数据结构的算法的重要性,当程序中存在着对时间要求很高的部分时,数据结构的选择就显得更加重要。

经典的数据结构数量有限,但是我们常常重复着一些为了实现向量、链表等结构而编写的代码,这些代码都十分相似,只是为了适应不同数据的变化而在细节上有所出入。STL容器就为我们提供了这样的方便,它允许我们重复利用已有的实现构造自己的特定类型下的数据结构,通过设置一些模板类,STL容器对最常用的数据结构提供了支持,这些模板的参数允许我们指定容器中元素的数据类型,可以将我们许多重复而乏味的工作简化。

容器部分主要由头文件<vector>,<list>,<deque>,<set>,<map>,<stack>和<queue>组成。对于常用的一些容器和容器适配器(可以看作由其它容器实现的容器),可以通过下表总结一下它们和相应头文件的对应关系。

序列式容器

向量(vector) 连续存储的元素<vector>

列表(list) 由节点组成的双向链表,每个结点包含着一个元素<list>

双端队列(deque) 连续存储的指向不同元素的指针所组成的数组<deque>

适配器容器

(stack) 后进先出的值的排列 <stack>

队列(queue) 先进先出的值的排列 <queue>

优先队列(priority_queue) 元素的次序是由作用于所存储的值对上的某种谓词决定的的一种队列 <queue>

关联式容器

集合(set) 由节点组成的红黑树,每个节点都包含着一个元素,节点之间以某种作用于元素对的谓词排列,没有两个不同的元素能够拥有相同的次序 <set>

多重集合(multiset) 允许存在两个次序相等的元素的集合 <set>

映射(map) 由{键,值}对组成的集合,以某种作用于键对上的谓词排列 <map>

多重映射(multimap) 允许键对有相等的次序的映射 <map>

 

迭代器

编辑

下面要说的迭代器从作用上来说是最基本的部分,可是理解起来比前两者都要费力一些(至少笔者是这样)。软件设计有一个基本原则,所有的问题都可以通过引进一个间接层来简化,这种简化在STL中就是用迭代器来完成的。概括来说,迭代器在STL中用来将算法和容器联系起来,起着一种黏和剂的作用。几乎STL提供的所有算法都是通过迭代器存取元素序列进行工作的,每一个容器都定义了其本身所专有的迭代器,用以存取容器中的元素。

迭代器部分主要由头文件<utility>,<iterator>和<memory>组成。<utility>是一个很小的头文件,它包括了贯穿使用在STL中的几个模板的声明,<iterator>中提供了迭代器使用的许多方法,而对于<memory>的描述则十分的困难,它以不同寻常的方式为容器中的元素分配存储空间,同时也为某些算法执行期间产生的临时对象提供机制,<memory>中的主要部分是模板类allocator,它负责产生所有容器中的默认分配器。

 

算法

编辑

大家都能取得的一个共识是函数库对数据类型的选择对其可重用性起着至关重要的作用。举例来说,一个求方根的函数,在使用浮点数作为其参数类型的情况下的可重用性肯定比使用整型作为它的参数类型要高。而C++通过模板的机制允许推迟对某些类型的选择,直到真正想使用模板或者说对模板进行特化的时候,STL就利用了这一点提供了相当多的有用算法。它是在一个有效的框架中完成这些算法的——你可以将所有的类型划分为少数的几类,然后就可以在模版的参数中使用一种类型替换掉同一种类中的其他类型。

STL提供了大约100个实现算法的模版函数,比如算法for_each将为指定序列中的每一个元素调用指定的函数,stable_sort以你所指定的规则对序列进行稳定性排序等等。这样一来,只要我们熟悉了STL之后,许多代码可以被大大的化简,只需要通过调用一两个算法模板,就可以完成所需要的功能并大大地提升效率。

算法部分主要由头文件<algorithm>,<numeric>和<functional>组成。<algorithm>是所有STL头文件中最大的一个(然而它很好理解),它是由一大堆模版函数组成的,可以认为每个函数在很大程度上都是独立的,其中常用到的功能范围涉及到比较、交换、查找、遍历操作、复制、修改、移除、反转、排序、合并等等。<numeric>体积很小,只包括几个在序列上面进行简单数学运算的模板函数,包括加法和乘法在序列上的一些操作。<functional>中则定义了一些模板类,用以声明函数对象。 [1] 

求同伴大佬采纳哦1!!!!!

袁翊凡在2018-09-15 19:07:15追加了内容

https://blog.csdn.net/sinat_35866463/article/details/76523216

同班大佬这个网站可以了解一下Orz

0
王远哲
王远哲
修练者
修练者

要使用此函数只需用#include <algorithm> sort即可使用,语法描述为:

sort(begin,end),表示一个范围,例如:

int _tmain(int argc, _TCHAR* argv[])
{
 int a[20]={2,4,1,23,5,76,0,43,24,65},i;
 for(i=0;i<20;i++)
  cout<<a[i]<<endl;
 sort(a,a+20);
 for(i=0;i<20;i++)
 cout<<a[i]<<endl;
 return 0;
}

输出结果将是把数组a按升序排序,说到这里可能就有人会问怎么样用它降序排列呢?这就是下一个讨论的内容.

 

一种是自己编写一个比较函数来实现,接着调用三个参数的sort:sort(begin,end,compare)就成了。对于list容器,这个方法也适用,把compare作为sort的参数就可以了,即:sort(compare).

1)自己编写compare函数:

bool compare(int a,int b)
{
      return a<b;   //升序排列,如果改为return a>b,则为降序

}

int _tmain(int argc, _TCHAR* argv[])
{
     int a[20]={2,4,1,23,5,76,0,43,24,65},i;
     for(i=0;i<20;i++)
       cout<<a[i]<<endl;
     sort(a,a+20,compare);
     for(i=0;i<20;i++)
       cout<<a[i]<<endl;
     return 0;
}

2)更进一步,让这种操作更加能适应变化。也就是说,能给比较函数一个参数,用来指示是按升序还是按降序排,这回轮到函数对象出场了。

为了描述方便,我先定义一个枚举类型EnumComp用来表示升序和降序。很简单:

enum Enumcomp{ASC,DESC};

然后开始用一个类来描述这个函数对象。它会根据它的参数来决定是采用“<”还是“>”。

class compare
{
      private:
            Enumcomp comp;
      public:
            compare(Enumcomp c):comp(c) {};
      bool operator () (int num1,int num2) 
         {
            switch(comp)
              {
                 case ASC:
                        return num1<num2;
                 case DESC:
                        return num1>num2;
              }
          }
};

接下来使用 sort(begin,end,compare(ASC)实现升序,sort(begin,end,compare(DESC)实现降序。

主函数为:

int main()
{
     int a[20]={2,4,1,23,5,76,0,43,24,65},i;
     for(i=0;i<20;i++)
         cout<<a[i]<<endl;
     sort(a,a+20,compare(DESC));
     for(i=0;i<20;i++)
         cout<<a[i]<<endl;
     return 0;
}

3)其实对于这么简单的任务(类型支持“<”、“>”等比较运算符),完全没必要自己写一个类出来。标准库里已经有现成的了,就在functional里,include进来就行了。functional提供了一堆基于模板的比较函数对象。它们是(看名字就知道意思了):equal_to<Type>、not_equal_to<Type>、greater<Type>、greater_equal<Type>、less<Type>、less_equal<Type>。对于这个问题来说,greater和less就足够了,直接拿过来用:

  • 升序:sort(begin,end,less<data-type>());
  • 降序:sort(begin,end,greater<data-type>()).

int _tmain(int argc, _TCHAR* argv[])
{
      int a[20]={2,4,1,23,5,76,0,43,24,65},i;
      for(i=0;i<20;i++)
          cout<<a[i]<<endl;
      sort(a,a+20,greater<int>());
      for(i=0;i<20;i++)
          cout<<a[i]<<endl;
      return 0;
}

4)既然有迭代器,如果是string 就可以使用反向迭代器来完成逆序排列,程序如下:

int main()
{
     string str("cvicses");
     string s(str.rbegin(),str.rend());
     cout << s <<endl;
     return 0;
}

 

 

qsort():

原型:
_CRTIMP void __cdecl qsort (void*, size_t, size_t,int (*)(const void*, const void*));

解释:    qsort ( 数组名 ,元素个数,元素占用的空间(sizeof),比较函数) 
比较函数是一个自己写的函数  遵循 int com(const void *a,const void *b) 的格式。
当a b关系为 >  <  = 时,分别返回正值 负值 零 (或者相反)。
使用a b 时要强制转换类型,从void * 转换回应有的类型后,进行操作。 
数组下标从零开始,个数为N, 下标0-(n-1)。

实例:
int compare(const void *a,const void *b)
{
     return *(int*)b-*(int*)a;   
}

int main()
{
     int a[20]={2,4,1,23,5,76,0,43,24,65},i;
     for(i=0;i<20;i++)
        cout<<a[i]<<endl;
     qsort((void *)a,20,sizeof(int),compare);
     for(i=0;i<20;i++)
        cout<<a[i]<<endl;
     return 0;
}

相关:

1)why你必须给予元素个数?

因为阵列不知道它自己有多少个元素

2)why你必须给予大小?

因为 qsort 不知道它要排序的单位.

3)why你必须写那个丑陋的、用来比较俩数值的函式?

因为 qsort 需要一个指标指向某个函式,因为它不知道它所要排序的元素型别.

4)why qsort 所使用的比较函式接受的是 const void* 引数而不是 char* 引数?

因为 qsort 可以对非字串的数值排序.

 

当然对于排序函数还有其他的用法,今天就只说这些,我也正在学习中,上述只是发表了一点自己的拙见,最后声明上诉实例是基于VC++2008。

0
王远哲
王远哲
修练者
修练者

首先要明确的是MonoBehaviour是每个脚本的基类.每个Javascript脚本自动继承MonoBehaviour.使用C#或Boo时,需要显式继承MonoBehaviour.

 

 

Unity3d中默认函数调用顺序(MonoBehaviour)
 

 

以下是一些常用的函数调用顺序的说明:

 

Awake:当一个脚本实例被载入时Awake被调用,要先于Start。建议少用,此刻物体可能还没有实例化出来,会影响程序执行顺序。需要注意的是,假设实例化一个物件:

 

GameObject go = new GameObject();

go.GetComponent().Test();

这个Test()的调用顺序会在Awake()之后,在Start()之前

 

 

Start:Start仅在Update函数第一次被调用前调用。物体实例化完成后调用(估计,没确认)。

 

Update:当MonoBehaviour启用时,其Update在每一帧被调用

 

FixedUpdate:这个函数会在每个固定的物理时间片被调用一次.这是放置游戏基本物理行为代码的地方。UPDATE之后调用。

 

Reset:Reset是在用户点击检视面板的Reset按钮或者首次添加该组件时被调用.此函数只在编辑模式下被调用.Reset最常用于在检视面板中给定一个最常用的默认值.

 

OnDestory:物体被删除时调用。

 

OnEnable:物体启用时被调用。

 

OnDisable:物体被禁用时调用。

 

OnGui:这个函数会每帧调用好几次(每个事件一次),GUI显示函数只能在OnGui中调用。备注:这个各大翻译都直接翻译成每帧调用一次了。下面是官方的原文。

OnGui:This means that your OnGUI implementation might be called several times per frame (one call per event). For more information on GUI events see the Event reference. If the MonoBehaviour's enabled property is set to false, OnGUI() will not be called.

 

更详细的请看这里:

http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.html

0
王远哲
王远哲
修练者
修练者

在表格的制作中,大家总会用到各种公式函数进行计算,今天教大家countif函数的使用方法,希望对你有用。

材料/工具

Excel

方法

  • 1

    首先打开需要进行函数计算的表格

  • 2

    然后点击“公式”,再点击“其他函数”,点击“统计”

  • 3

    然后再统计中找到并点击“COUNTIF”

  • 4

    再然后再图中区域输入需要的区域和条件,点击确定

  • 5

    最后就会出现计算结果了。

我要回答