0
0
已采纳
张帆
中级天翼
中级天翼
汉诺塔问题是指:一块板上有三根针 A、B、C。A 针上套有 64 个大小不等的圆盘,按照大的在下、小的在上的顺序排列,要把这 64 个圆盘从 A 针移动到 C 针上,每次只能移动一个圆盘,移动过程可以借助 B 针。但在任何时候,任何针上的圆盘都必须保持大盘在下,小盘在上。从键盘输入需移动的圆盘个数,给出移动的过程。
算法思想
对于汉诺塔问题,当只移动一个圆盘时,直接将圆盘从 A 针移动到 C 针。若移动的圆盘为 n(n>1),则分成几步走:把 (n-1) 个圆盘从 A 针移动到 B 针(借助 C 针);A 针上的最后一个圆盘移动到 C 针;B 针上的 (n-1) 个圆盘移动到 C 针(借助 A 针)。每做一遍,移动的圆盘少一个,逐次递减,最后当 n 为 1 时,完成整个移动过程。
因此,解决汉诺塔问题可设计一个递归函数,利用递归实现圆盘的整个移动过程,问题的解决过程是对实际操作的模拟。
1
龙舟
高级光能
高级光能
0
0